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Exchange-correlation (XC) thermal effects have an impact of up to 5%  
on the calculated properties of D2 and must be taken into account for  
accurate predictions
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Summary

• XC thermal effects account for the softening of the deuterium Hugoniot  
at P > 300 GPa in agreement with recent experimental measurements

• The calculated reflectivity of shocked deuterium is in a good agreement  
with experimental measurements for shock speeds up to 50 km/s

• The deuterium system along the Hugoniot transforms from a semiconducting 
molecular liquid to an atomic-poor metallic liquid and finally to a 
nondegenerate plasma
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We are developing temperature-dependent XC functionals  
to improve density functional theory (DFT) predictions
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  PBE/GGA: J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996); 
  78, 1396(E) (1997).
  PZ/LDA: J. P. Perdew and A Zunger, Phys. Rev. B 23, 5048 (1981). 
* J. P. Perdew and K. Schmidt, AIP Conf. Proc. 577, 1 (2001).

Development has to start from the lowest rung because low-rung 
functionals are used as ingredients for higher rungs

Chemical accuracy

+dependence on virtual orbitals
double hybrid: ~B97X-2, XYG3, B2PLYP

+dependence on kinetic energy density
meta-GGA: xHCTH, TPSS, M06-L

+dependence on the density gradient 
GGA: PBE, BLYP, OLYP

dependence on the density
LDA: VWN, GPW92

Hartree–Fock theory

+dependence on exact exchange 
hybrid GGA:

B3LYP, mPW1K
hyper-meta-GGA:

M06-2X, M11, TPSSH
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Jacob’s ladder* of the zero-temperature XC functional approximations

! Finite-temperature Hybrids: project funded by NSF

! Finite-temperature metaGGA: finite-temperature version of SCAN (work in progress)

! Finite-temperature GGA (KDT16): Karasiev et al., PRL 120, 076401 (2018)

! Finite-temperature LDA (KSDT): Karasiev et al., PRL 112, 076403 (2014)
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The XC thermal effects for the homogeneous electron gas  
(HEG) are significant in warm-dense-matter (WDM) regime*

• At low temperature the XC thermal effects are negligible

• In high temperature limit the free-energy is dominated 
by the noninteracting part " XC is negligible and does 
not play a role 
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fxc = XC free energy per particle
fxc = XC energy per particle at T = 0  
 fs = non-interacting free energy

*V. V. Karasiev, L. Calderín, and S. B. Trickey, Phys. Rev. E 93, 063207 (2016).

In this work we use Karasiev–Dufty–Trickey 
(KDT16) GGA-level XC free-energy functional to 
address the issue of thermal effects
See details in: 
Karasiev et al., Phys. Rev. Lett. 120, 076401 (2018).

Measure of relative importance of thermal effects
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The D2 Hugoniot becomes ~2% softer at high pressure (P > 300 GPa)  
as a result of thermal XC effects; agreement with recent experimental  
measurements is improved

• Energy DE and pressure DP 
corrections caused by the thermal XC 
effects are larger than 4% but have 
the same sign 

• There is some cancellation between 
DE and DP corrections in the 
Hugoniot relation*
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Results

  Fernandez-Pañella et al., (submitted) (2018);
  Knudson, Desjarlais PRL, 118 035501 (2017).
* V. V. Karasiev, L. Calderín, and S. B. Trickey, Phys. Rev. E 93, 063207 (2016).
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Shocked D2 along the principal Hugoniot changes from molecular semiconducting 
liquid to atomic metallic liquid and finally to nondegenerate plasma

Radial D–D distribution function for three 
selected temperatures

Frequency-dependent electrical conductivity
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Results
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As a result of thermal XC effects, the reflectivity of D2 along the Hugoniot is 
increased by about 4% for shock speeds above 20 km/s

Reflectivity of deuterium as a function of 
shock speed along the principal Hugoniot

Reflectivity is defined as: 
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Results

  * L. A. Collins, J. D. Kress, and D. E. Hanson, Phys. Rev. B 85, 233101 (2012).
** P. C. Souers, Hydrogen Properties for Fusion Energy (University of California, Berkeley, CA, 1986).

n0 (532 nm) = 1.16 – calculated value
n0 = 1.14 – experimental value** 
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There is good agreement with recent experimental measurements  
on OMEGA by M. Zaghoo
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Results

M. Zaghoo, QI3.00001, this conference (invited);
P. M. Celliers et al., Phys. Rev. Lett. 84, 5564 (2000);
S. X. Hu et al., Phys. Plasmas 22, 056304 (2015). 

Recent experimental measurements on OMEGA: 
see M. Zaghoo et al., “Breakdown of Fermi 
Degeneracy in the Simplest Liquid Metal,”  
to be submitted to Physical Review Letters

• Our calculations with KDT16 XC functional 
take into account the refraction index  
n0 = 1.16 of liquid deuterium in its initial state  
tD = 0.172 g/cm3 and T = 20 K
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Due to thermal XC effects the dc conductivity of D2 along the  
Hugoniot is increased by about 5% 
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Results

• dc conductivity is quickly increased between  
Us = 15 and 20 km/s

• The system behaves as a liquid metal between  
Us = 20 and 30 km/s: vdc decreases as T increases

• The system behaves as plasma for Us > 40 km/s:  
vdc increases as T increases
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Summary/Conclusions

Exchange-correlation (XC) thermal effects have an impact of up to 5%  
on the calculated properties of D2 and must be taken into account for  
accurate predictions

• XC thermal effects account for the softening of the deuterium Hugoniot  
at P > 300 GPa in agreement with recent experimental measurements

• The calculated reflectivity of shocked deuterium is in a good agreement  
with experimental measurements for shock speeds up to 50 km/s

• The deuterium system along the Hugoniot transforms from a semiconducting 
molecular liquid to an atomic-poor metallic liquid and finally to a 
nondegenerate plasma


