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MJ neutron yield could be possible for direct-drive double-shell implosions 
with gradient-density shells 

• Direct-drive double-shell designs for inertial confinement fusion (ICF) have been 
performed with the 2-D hydrocode DRACO using the best physics models currently 
available 
 

• Gradient-density inner shells are found to be essential for igniting a double-shell 
target in which the outer shell can be driven at a very high adiabat (a ~ 8 to 10) 
  

• Our DRACO simulations show that such designs could survive both laser-imprint 
and classical Rayleigh–Taylor (RT) instability growth, leading to the production of 
~MJ neutron yields

2

Summary
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Indirect-drive double-shell designs have been investigated 
for noncryogenic targets* in the past
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Mixing between the inner shell and DT fuel is always a concern for double-shell targets.

* W. S. Varnum et al., Phys. Rev. Lett. 84, 5153 (2000);
  P. Amendt, J. D. Colvin et al., Phys. Plasmas 9, 2221 (2002); P. A. Amendt et al., Phys. Rev. Lett. 94, 065004 (2005);
  J. Milovich et al., Phys. Plasmas 11, 1552 (2004);
  H. F. Robey et al., Phys. Plasmas 12, 072701 (2005); H. F. Robey et al., Phys. Rev. Lett. 103, 145003 (2009).
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Interest in indirect-drive cryogenic double-shell* (or multiple-shell**) 
targets has been recently renewed because they may provide an 
alternative path to ignition
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• 1.8-MJ laser energy

• 1-D clean yield ~3 MJ (22% burn)

• 1-D fall-line mix ~1 MJ

• 1-D RAGE with BHR mix ~0.5 MJ

• 30-nm Ti tamper outside Au improves 1-D performance; 
Be tamper is also proposed to use for indirect-drive 
double-shell designs†

Results of D.S. Montgomery et al. (2015)

 *  D. S. Montgomery et al., Phys. Plasmas 25, 092706 (2018); 
  E. C. Merritt et al., Bull. Am. Phys. Soc. 61, BAPS.2016.DPP.PO5.3 (2016).
** K. Molvig et al., Phys. Rev. Lett. 116, 255003 (2016); 
    P. McKenty et al., Bull. Am. Phys. Soc., CO4.00002 (2018). 
 † E. Loomis, presented at the 22nd Target Fabrication Meeting,  
  Las Vegas, NV, 12–16 March 2017.
  BHR: Besnard–Harlow–Rauenzahn 
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Recent progress to make gradient-density shells* at General Atomics could  
significantly help to mitigate the classical Rayleigh–Taylor 
instability for double-shell target designs
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A density gradient for the inner shell could reduce the Atwood  
numbers at interfaces for double-shell targets. 

* H. Xu et al., Fusion Sci. Technol. 73, 354 (2018). 

Results of 
H. Xu et al. (2018)
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High-adiabat (a ≈ 8 to 10) direct-drive double-shell designs with 
a gradient-density inner shell were examined using DRACO with  
comprehensive physics models (NL + CBET + FPEOS)
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1-D yield: ~1.8 # 1018 (~5.1 MJ) 

Direct drive can couple more energy to targets:
Ek (outer shell) c 90 kJ and Ek (inner shell) c 40 kJ. NL: nonlocal

CBET: cross-beam energy transfer
FPEOS: first-principles equation of state



Long-wavelength modes have “imprinted” on the imploding inner shell.
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DRACO simulations with long-wavelength drive nonuniformities (up to , = 50)  
have indicated an impact pressure of P ~ 4 Gbar when the outer shell 
stagnates on the inner shell
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P ~ 4 Gbar
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The low-mode DRACO simulation has resulted in an igniting double-shell 
target with a neutron yield of ~3.2-MJ energy

9

Y ≈ 1.14 # 1018 and GTiH = 22.9 keV
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Setting the outer shell on high adiabat (a ≈ 8 to 10) helps to reduce 
laser-imprint effects in high-mode DRACO simulations (up to , = 150) 
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High-mode DRACO simulations with laser imprinting are in progress (MJ yield is expected).
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MJ neutron yield could be possible for direct-drive double-shell implosions 
with gradient-density shells 

• Direct-drive double-shell designs for inertial confinement fusion (ICF) have been 
performed with the 2-D hydro code DRACO using the best physics models currently 
available 
 

• Gradient-density inner shells are found to be essential for igniting a double-shell 
target in which the outer shell can be driven at a very high adiabat (a ~ 8 to 10) 
  

• Our DRACO simulations show that such designs could survive both laser-imprint 
and classical Rayleigh–Taylor (RT) instability growth, leading to the production of 
~MJ neutron yields
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Summary/Conclusions 


