Direct-Drive-Ignition Designs with Gradient-Density Double Shells

S. X. Hu
University of Rochester
Laboratory for Laser Energetics

60th Annual Meeting of the American Physical Society
Division of Plasma Physics
Portland, OR
5–9 November 2018
Summary

MJ neutron yield could be possible for direct-drive double-shell implosions with gradient-density shells

- Direct-drive double-shell designs for inertial confinement fusion (ICF) have been performed with the 2-D hydrocode DRACO using the best physics models currently available

- Gradient-density inner shells are found to be essential for igniting a double-shell target in which the outer shell can be driven at a very high adiabat ($\alpha \sim 8$ to 10)

- Our DRACO simulations show that such designs could survive both laser-imprint and classical Rayleigh–Taylor (RT) instability growth, leading to the production of ~MJ neutron yields
Collaborators

R. Epstein, V. N. Goncharov, and E. M. Campbell

University of Rochester
Laboratory for Laser Energetics
Indirect-drive double-shell designs have been investigated for noncryogenic targets* in the past.

Mixing between the inner shell and DT fuel is always a concern for double-shell targets.

Results of P. Amendt et al. (2002)

*W. S. Varnum et al., Phys. Rev. Lett. 84, 5153 (2000);
P. Amendt, J. D. Colvin et al., Phys. Plasmas 9, 2221 (2002); P. A. Amendt et al., Phys. Rev. Lett. 94, 065004 (2005);
J. Milovich et al., Phys. Plasmas 11, 1552 (2004);
Interest in indirect-drive *cryogenic* double-shell (or multiple-shell) targets has been recently renewed because they may provide an alternative path to ignition.

Results of D.S. Montgomery et al. (2015)

- 1.8-MJ laser energy
- 1-D clean yield ~3 MJ (22% burn)
- 1-D fall-line mix ~1 MJ
- 1-D *RAGE* with BHR mix ~0.5 MJ
- 30-μm Ti tamper outside Au improves 1-D performance; Be tamper is also proposed to use for indirect-drive double-shell designs

†E. Loomis, presented at the 22nd Target Fabrication Meeting, Las Vegas, NV, 12–16 March 2017.

BHR: Besnard–Harlow–Rauenzahn
Recent progress to make gradient-density shells* at General Atomics could significantly help to mitigate the classical Rayleigh–Taylor instability for double-shell target designs.

A density gradient for the inner shell could reduce the Atwood numbers at interfaces for double-shell targets.

High-adiabat ($\alpha \approx 8$ to 10) direct-drive double-shell designs with a gradient-density inner shell were examined using DRACO with comprehensive physics models (NL + CBET + FPEOS).

1-D yield: $\sim 1.8 \times 10^{18}$ (~5.1 MJ)

Direct drive can couple more energy to targets: E_k (outer shell) \approx 90 kJ and E_k (inner shell) \approx 40 kJ.

- CH foam (5 mg/cm3)
- Liquid DT
- Be: 60 μm
- W-doped Be: 50 μm (W: 1% \rightarrow 97% \rightarrow 1%)
- TC14474
- High-adiabat ($\alpha \approx 8$ to 10)

$\alpha \approx 8$ ($E_{\text{total}} = 1.9$ MJ)

Direct drive can couple more energy to targets: E_k (outer shell) \approx 90 kJ and E_k (inner shell) \approx 40 kJ.

- CH foam (5 mg/cm3)
- Liquid DT
- Be: 60 μm
- W-doped Be: 50 μm (W: 1% \rightarrow 97% \rightarrow 1%)

$\alpha \approx 8$ ($E_{\text{total}} = 1.9$ MJ)

Direct drive can couple more energy to targets: E_k (outer shell) \approx 90 kJ and E_k (inner shell) \approx 40 kJ.

$\alpha \approx 8$ ($E_{\text{total}} = 1.9$ MJ)

Direct drive can couple more energy to targets: E_k (outer shell) \approx 90 kJ and E_k (inner shell) \approx 40 kJ.

$\alpha \approx 8$ ($E_{\text{total}} = 1.9$ MJ)

Direct drive can couple more energy to targets: E_k (outer shell) \approx 90 kJ and E_k (inner shell) \approx 40 kJ.

$\alpha \approx 8$ ($E_{\text{total}} = 1.9$ MJ)

Direct drive can couple more energy to targets: E_k (outer shell) \approx 90 kJ and E_k (inner shell) \approx 40 kJ.

$\alpha \approx 8$ ($E_{\text{total}} = 1.9$ MJ)
DRACO simulations with long-wavelength drive nonuniformities (up to $\ell = 50$) have indicated an impact pressure of $P \sim 4$ Gbar when the outer shell stagnates on the inner shell.

Long-wavelength modes have “imprinted” on the imploding inner shell.
The low-mode *DRACO* simulation has resulted in an igniting double-shell target with a neutron yield of \(\sim 3.2\)-MJ energy.

\[Y \approx 1.14 \times 10^{18} \text{ and } \langle T_i \rangle = 22.9 \text{ keV} \]
Setting the outer shell on high adiabat ($\alpha \approx 8$ to 10) helps to reduce laser-imprint effects in high-mode \textit{DRACO} simulations (up to $\ell = 150$).

High-mode \textit{DRACO} simulations with laser imprinting are in progress (MJ yield is expected).
MJ neutron yield could be possible for direct-drive double-shell implosions with gradient-density shells

- Direct-drive double-shell designs for inertial confinement fusion (ICF) have been performed with the 2-D hydro code *DRACO* using the best physics models currently available.

- Gradient-density inner shells are found to be essential for igniting a double-shell target in which the outer shell can be driven at a very high adiabat ($\alpha \sim 8$ to 10).

- Our *DRACO* simulations show that such designs could survive both laser-imprint and classical Rayleigh–Taylor (RT) instability growth, leading to the production of \simMJ neutron yields.