
Optimization of Direct-Drive Inertial Fusion Implosions 
Through Predictive Statistical Modeling

V. Gopalaswamy
University of Rochester
Laboratory for Laser Energetics

60th Annual Meeting of the
American Physical Society
Division of Plasma Physics

Portland, OR
5–9 November 2018

1

0.3

100

200

300

400

500

0
0.5

Ex
tra

po
la

te
d 

fu
si

on
en

er
gy

 (k
J)

0.7
|no alpha

0.9 1.1

Previous experiments
Yield campaign
tR campaign

Burning
plasma

Ignition

1.9 MJ



TC14565

Recent results from the yield and optimization campaigns show predictable 
improvements in performance leading to about 500 kJ of extrapolated yield

• The OMEGA implosion performance can be predicted pre-shot using statistical mapping

• This new predictive capability led to improvements in yields and areal density 
(1.6 ×1014 with 160 mg/cm2 of average areal density) 

• The extrapolated no-alpha ignition parameter |no alpha = 0.74 leads to a yield 
amplification of 3.0× and extrapolated yield of ~500 kJ at 1.9 MJ of symmetric 
illumination 

• Further improvements are expected from the optimization campaign and from the 
upcoming facility upgrades (new phase plates, advanced ablators, fill-tube capability, 
and possible CBET* mitigation**)
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Summary

 * CBET: cross-beam energy transfer
** R. Follett, NI2.00005, this conference.
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Optimization of an ICF* target requires a search 
through an n > 10 dimensional space

• Predictive tools are needed to efficiently search through this space

• Relative to the experimental frequency, these tools need to be 
 1) accurate when evaluated
 2) quick to evaluate
 3) easily updated with experimental feedback
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Simulations have traditionally been the primary predictive tool in ICF, 
but are not accurate enough to efficiently guide experimental design

• 1-D simulations are computationally inexpensive, and are often used for target design

• These simulations overestimate the yield and areal density, but correctly model 
the energy coupling and implosion velocity

• 2-D and 3-D simulations are slow, unsuitable for parameter scans, and generally 
not predictive
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Using the experimental and 1-D simulation database of OMEGA 
implosions, we construct a function that transforms the code 
outputs into experimental predictions
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   V. Gopalaswamy et al., “Tripling the Yield in Direct-Drive 
   Laser Fusion via Statistical Modeling,” submitted to Nature.
 * I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010). 
** V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006).
 † FPEOS: first-principle equation of state; 
   S. X. Hu et al., Phys. Rev. E 92, 043104 (2015).
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The transformation is derived from statistical mapping relations 
between experimental observables and 1-D simulation outputs

7

Existence of mapping relation requires repeatable experiments " only systematic nonuniformities.

, ,S S

D- , , 00D-

D- D-Experimental observables

Simulated observables

O F

O F

I
I

sys ran

sim
sim

exp =

=

"

"
3 3 Dexp 1

1 1

-8
6 @

B

D- D-D-3,O O ,F F S S–1 sim sys ranexp = sim 1 3exp _ i8 B

FD D-- = OI –
sim

1 sim
11 8 B

Pulse shape + target specs Systematic and random nonuniformity seeds

Neglect if experiments are repeatableConstant if systematic

D-O F Omap
simexp . 18 B Predict experiment from 1-D simulation



TC14570

Power laws are used as basis functions to expand the mapping relation
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Test on Basis Functions

Many choices of variables are suitable for accurate mapping.

, iD D- -O F O O~map
sim sim

i

N

exp
1

i.
n

=
1 1_ _i i%

100 150 200

t
R

si
m

250
100

200

150

250

0 2 4

Mapping of simulated tR Test on
LILAC simulations

with CBET, nonlocal
transport, FPEOS

Mapping of simulated yield

Yi
el

ds
im

  (
×1

01
4 )

6 8
0

4

2

6

8

R R
RCRM .

HS
sim

stag
sim

sim

in

out
1 4

e o RV M .sim
sim
1.3

imp
sim

stag
6 0 8t_ _i i



TC14571

Deficiencies in the code physics models can be 
partially remedied through statistical relations
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Test on Missing Physics

Test: recover LILAC with nonlocal + CBET + FPEOS from LILAC flux limiter without CBET 
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Application to OMEGA implosions
to increase the fusion yield
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The mapping relation correctly predicted a higher 
yield when the target size was increased
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Larger targets, thinner ice, and changes to the pulse shapes 
led to higher yields as predicted by the mapping relations

• The mapping relation evolves as more shots are added 
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“Random” effects lead to ~10% yield variation and are accounted for 
post-shot through the measured ion temperature asymmetries

• Random variations in yield are caused 
by target offsets, power imbalance, 
and surface roughness

• nTOF* detectors measure the ion 
temperature along six lines of sight

• The ion temperature asymmetry metric, 
     acts as a proxy for this effect

• The yield is degraded by 
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Tripling of the fusion yield was achieved in seven 
shot days using statistical mapping predictions
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Application to OMEGA implosions to 
increase the areal density at high yields

15
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The areal density was increased by ~65%, keeping 
the yield above 1014 using the model predictions
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The increase in areal density was obtained through adjustments 
to the pulse shape and target specifications
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The best performing implosions used a new pulse shape 
and exhibited both high yields and areal density
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87266 90288
Yield 1.4 ×1014 1.56 ×1014

tR 
(mg/cm2) 100 160

Radius 
(GMXI-c, nm) 33 28

GMXI: gated monochromatic x-ray imager
D. Patel et al., GO6.00006, this conference.
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Performance degradation mechanisms
for OMEGA implosions

19
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The in-flight-aspect-ratio (IFAR) appears as a key figure 
of merit in the statistical predictions of both yield and tR
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• Mixing front from imprint travels 
distance h ~ bgt2 ~ bR0, and 
fraction of shell comprised 
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Three-dimensional ASTER* simulations indicate that high modes from 
laser imprinting (, > 100) are limiting the performance at high IFAR’s

21

* I. V. Igumenshchev et al., Phys. Plasmas 23, 052702 (2016).
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SSD* on/off experiments show that laser imprinting causes 
30% degradation of areal density at higher IFAR’s
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High-performance implosions are degraded by imprint.

* SSD: smoothing by spectral dispersion
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The role of high modes will be clarified through 
mitigation techniques that are under development

• New ablator designs, such as the recently tested polystyrene ablators, show 
lower levels of surface imperfections than the CD ablators currently in use*

• Foam-coated ablators have the potential to reduce the effects of laser imprint**

• Future experiments will investigate whether increasing the SSD bandwidth 
can further mitigate laser imprint

• Fill-tube–based target fills can create a more-uniform ice layer and reduce 
the amount of tritium damage to the targets†

• New, smaller DPP’s‡ (R75‡*) may enable high-velocity implosions at lower IFAR’s
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 * S. P. Regan et al., “The National Direct-Drive Inertial Confinement 
Fusion Program,” submitted to Nuclear Fusion. 

** S. X. Hu et al., Phys. Plasmas 25, 082710 (2018).
 † D. R. Harding et al., Fusion Sci. Technol. 73, 324 (2018). 
 ‡ DPP: distributed phase plates
 ‡* I. V. Igumenshchev et al., Phys. Plasmas 23, 052702 (2016).



Hydrodynamic scaling of OMEGA 
implosions to NIF energies
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25

Direct drive
NIF 1.9 MJ

3.6 mm

0.86 mm 

OMEGA 26 kJ

Scale 1:70
in energy

Hydrodynamic scaling

• Initially assumes 
symmetric illumination

• Polar-drive extrapolation 
will follow 

R. Nora et al., Phys. Plasmas 21, 056316 (2014); 
R. Nora, Ph.D. thesis, University of Rochester, 2015.

The performance metric is the generalized 
Lawson criterion scaled to NIF energies
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Hydro scaling provides a simple and robust tool 
to scale OMEGA performance to NIF energies

Same hydro for OMEGA and NIF LPI* not included in hydro scaling
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OMEGA will validate the hydrodynamics (that scales), while the NIF will assess the LPI (that does not scale).

• Same implosion velocity and adiabat

• Same final hot-spot pressure and 
shell density

• Mass and volume scale with laser energy

• Same energy coupling to target

• All nonuniformities scale with size 
(conservative for NIF since ice 
roughness/target –radius is less 
and impact of fill tube is less)

• Hydro scaling does not account for 
differences in LPI

• LPI depends on size and is different for 
OMEGA and the NIF

• Assessing the impact of LPI on the NIF 
requires dedicated experiments on the 
NIF (DD MJ campaign on NIF)

• Results from planar and sub-scale spherical 
experiments on NIF suggest that hot electron 
levels will be manageable in direct-drive 
ignition designs

* LPI: laser–plasma interaction
 M. Rosenberg et al., CO4.00005, this conference.
 A. A. Solodov et al., JO6.00010, this conference.
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The no-alpha hydro scaling can be explained with simple physics
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Scale up a heating
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The effect of alpha heating is assessed through simple 
theory or simulations of hydro-equivalent targets
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The highest-yield OMEGA implosions from the Optimization Campaign scale to 
500 kJ of fusion energy at 1.9 MJ of symmetric drive (to 1 MJ for a 2.5-MJ drive)
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Recent results from the yield and optimization campaigns show predictable 
improvements in performance leading to about 500 kJ of extrapolated yield

• The OMEGA implosion performance can be predicted pre-shot using statistical mapping

• This new predictive capability led to improvements in yields and areal density 
(1.6 ×1014 with 160 mg/cm2 of average areal density) 

• The extrapolated no-alpha ignition parameter |no alpha = 0.74 leads to a yield 
amplification of 3.0× and extrapolated yield of ~500 kJ at 1.9 MJ of symmetric 
illumination 

• Further improvements are expected from the optimization campaign and from the 
upcoming facility upgrades (new phase plates, advanced ablators, fill-tube capability, 
and possible CBET* mitigation**)
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Summary/Conclusions

 * CBET: cross-beam energy transfer
** R. Follett, NI2.00005, this conference.



Backup
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Because of higher temperatures, recent implosions require lower pressures
and lower convergence to achieve hydro-equivalent ignition conditions
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Interpreting the mapping relations provides  
physical insight in the target design
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Including lower-adiabat implosions shows the yield increase from convergence 
is less than 1-D predictions while the areal density scales as 1-D
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In experiments, a higher convergence ratio (CR) leads to a very modest increase in yield.

* MRS: magnetic recoil spectrometer
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The hydro-scaled laser pulses do not exceed 500 TW
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The sensitivity of the areal density to the details of the laser  
pulse shape (i.e., shock timing) and the large measurement  
errors (~!10%) complicate the predictions  

• Mapping of the full tR database provides a less accurate but more general prediction

• Using a subset of tR data improves accuracy by limiting the parameter space  
of laser pulse shapes and target specs
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