X-Ray Diffraction of Ramp-Compressed Potassium

This work
Solid phases of potassium are observed at pressures up to 400 GPa

- Potassium (K), like other alkali metals, is predicted to transform into complex structures at extreme pressures.
- The melting temperature has been previously observed to increase sharply with pressure up to 22 GPa.
- *In-situ* x-ray diffraction on ramp-compressed K constrains the crystal structure and melting curve up to 400 GPa.
Collaborators

University of Rochester Laboratory for Laser Energetics

A. Jenei, M. G. Gorman, R. Briggs, and J. H. Eggert

Lawrence Livermore National Laboratory

M. I. McMahon

University of Edinburgh
Core electrons influence structures of alkali metals at high pressures

For Na, see D. Polsin’s talk at session UM9

Increasing Structural Complexity

The phase diagram of K is unknown above 112* GPa and 550 K**

K was ramp compressed to high pressures near the isentrope.
The x-ray diffraction pattern encodes information about the crystal structure.

- Compression changes d-spacing between lattice planes.
- Compression causes phase transformations, leading to different diffraction patterns.

\[\lambda = 2d \sin \theta \]
The powder x-ray diffraction image plate (PXRDIP)* platform is deployed on OMEGA EP to record the diffraction patterns.

Cu XRS spectrum

Photon energy (keV)

0 1 2 3

J/keV/sr

Heα

Kα

Hα

X-ray source

Drive laser

Direct x-ray beam

**VISAR: Velocity interferometer system for any reflector.
Pressure in the K sample is inferred using velocimetry measurements

Shot 26478

Algorithm

Characteristics

$P = 240 \pm 5 \text{ GPa}$
Solid phases are observed at pressures up to 400 GPa, and not consistent with expected candidate structures.

\[\lambda = 2d \sin \theta \]
Solid diffraction observations up to 400 GPa put a new constraint on the melting curve.
Solid phases of potassium are observed at pressures up to 400 GPa

- Potassium (K), like other alkali metals, is predicted to transform into complex structures at extreme pressures.
- The melting temperature has been previously observed to increase sharply with pressure up to 22 GPa.
- *In-situ* x-ray diffraction on ramp-compressed K constrains the crystal structure and melting curve up to 400 GPa.