M. K. GINNANE,¹ A. SORCE,¹ J. D. KENDRICK,¹ R. BONI,¹ B. SALTZMAN,¹ D. WEINER,¹ M. ZAGHOO,¹ D. N. POLSIN,¹ B. J. HENDERSON,¹ J. ZAO,¹ M. COUCH,¹ C. M. ROGOFF,² M. C. GREGOR,³ T. R. BOEHLY,¹ J. R. RYGG,¹ and G. W. COLLINS¹

Update to VISAR and SOP diagnostics

- In response to users' requests, VISAR and SOP will have periodic timing and calibration tests
- a T-0 test will be performed twice a year – SOP calibration will be performed twice a year
- Telescopes and optical relays on OMEGA and OMEGA EP will be
- redesigned – improve SOP optical performance in 590- to 850-nm ranges
- install baffles to reduce throughput of light from outside FOV
- mount SOP calibration on telescope
- OMEGA EP TIM-12 upgrade
- install TIM periscope to improve alignment for off-axis campaigns

An upgraded telescope will improve SOP imaging, calibration, and VISAR alignment

Imaging

E11212I

- The current telescope is only optimized for 532-nm light, which causes the SOP to have imaging capabilities that are nearly $40 \times$ the diffraction limit
- **Calibration**
 - The current calibration source cannot be repeatedly
 - installed and aligned
 - The calibration source is only available on OMEGA
- **Alignment**
 - The design of the current telescope inhibits the ability to accurately point and center through the three primary
 - optics
 - Additional alignment aids will be developed to quantify and improve alignment

Upgrading the telescope gives an opportunity to make many improvements to the VISAR/SOP system as a whole.

Improvements to the VISAR and Streaked Optical **Pyrometer at the Omega Laser Facility**

¹ University of Rochester, Laboratory for Laser Energetics ²ASML, ³Lawrence Livermore National Laboratory

- In response to users' requests, VISAR and SOP will have periodic timing and calibration tests
 - a T-0 test will be performed twice a year
 - SOP calibration will be performed twice a year
- Telescopes and optical relays on OMEGA and OMEGA EP will be redesigned
 - improve SOP optical performance in 590- to 850-nm ranges
 - install baffles to reduce throughput of light from outside FOV
 - mount SOP calibration on telescope
- OMEGA EP TIM-12 upgrade
 - install TIM periscope to improve alignment for off-axis campaigns

FOV: field of view TIM: ten-inch manipulator VISAR: velocity interferometer system for any reflector SOP: streaked optical pyrometer

VISAR and SOP use a common telescope to acquire data from laser-compressed samples

- 590- to 850-nm light from the shock front is imaged onto a streak camera
- Spatial and temporal data are collected simultaneously with a VISAR
- The brightness temperature is inferred from self-emission intensity using the absolute calibration

An upgraded telescope will improve SOP imaging, calibration, and VISAR alignment

Imaging

- The current telescope is only optimized for 532-nm light, which causes the SOP to have imaging capabilities that are nearly 40× the diffraction limit

Calibration

- The current calibration source cannot be repeatedly installed and aligned
- The calibration source is only available on OMEGA

Alignment

- The design of the current telescope inhibits the ability to accurately point and center through the three primary optics
- Additional alignment aids will be developed to quantify and improve alignment

Upgrading the telescope gives an opportunity to make many improvements to the VISAR/SOP system as a whole.

The previous telescope design allowed light from outside the desired field of view to be relayed to the streak cameras

Previous telescope

First image plane

Bolt pattern for the light-bulb fixture and the alignment tools

The front-end alignment system is designed to interface any Thorlabs 60-mm cage components

E26089b

The updated telescope reduces scattered-light collection by a factor of 200

Previous telescope

The previous telescope allowed 2.2% or target chamber (TC) scattered light incident on the *f*/3.3 collection lens to exit the telescope

- Energy loss mechanisms
 - absorption/total internal reflection (TIR) by lenses
 - absorption by metal
- The baffled telescope allows 0.011% of TC scattered-light energy incident on the collection lens to exit the telescope—an improvement of 200×

E26090c

Achromat design performance over the 590- to 850-nm SOP spectral band is near-diffraction limited

A NIST-traceable source is used to calibrate the spectral response of the SOP

- New telescope mounts the source kinematically; SOP focus on the filament is fine-tuned with the TIM insertion depth
- Narrow bandpass filters isolate regions of the source's emission spectrum and the SOP response in each region is measured
- An estimated system response curve is fit to the measured SOP response within each wavelength range

Measured SOP intensity, *I* (ADU's):

$$I = A_0 \frac{T(W_{S0})}{\eta} \int_{\text{all } \lambda} d\lambda \, L_s(\lambda) T_x(\lambda) SR(\lambda)$$

- A_0 = calibration parameter $X(W_{S0})$ = throughput depending on experimental slit width, W_{S0}
 - η = sweep rate in pixels/ns
- L_{s} = source spectral radiance
- T_{x} = transmission spectra of neutral density (ND) or bandpass filters
- SR = system response

E26094a

The updated telescope improves temporal and spatial resolution in the SOP data

