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A chirped laser pulse focused by a chromatic lens  
exhibits a dynamic, or “flying,” focus*

• The flying focus provides unprecedented spatiotemporal control over  
laser–plasma interactions by decoupling

 – the spot size of the pulse from the focal range
 – the velocity of the peak intensity from the group velocity

• Experiments have demonstrated the flying focus and the ability  
to generate ionization waves at any velocity (IWAV)

• Flying focus was applied to several applications
 – photon accelerator: IWAV’s can shift visible laser light to the XUV
 – Raman amplification: flying focus could overcome several  
challenges of laser-plasma amplifiers

 – Cherenkov radiation: flying focus allows new radiation sources
 – vacuum electron acceleration: flying focus enables vacuum acceleration

2

* D. H. Froula et al., Nat. Photonics 12, 262 (2018);
  A. Sainte-Marie, O. Gobert, and F. Quéré, Optica 4, 1298 (2017).
  XUV: extreme ultraviolet
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Ideal lenses limit the region of high intensity to the Rayleigh range
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Ideal lens
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A diffractive lens has a different focal length for each color
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Diffractive lens

Lf = (Dm/m)f

With only 10 nm of bandwidth, the distance separating focused colors can be 
~100× greater than the Rayleigh length, extending the range of high intensity.



E26376b

Combining a diffractive lens with a chirped laser pulse provides 
spatiotemporal control over the focus

6

The spectral phase of the pulse determines the time at which color reaches  
focus, resulting in a peak intensity with a dynamic trajectory.
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The dynamic focus can propagate over 100× the Rayleigh length of the system
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The dynamic focus can propagate over 100× the Rayleigh length of the system
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By varying the pulse duration (chirp) of the laser (T),  
the velocity of the focus can be controlled
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By changing the direction of the chirp (blue to red)  
the focus can be made to counter-propagate
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Reducing the pulse duration of the negatively chirped beam (blue to red) 
produces a focal velocity faster than the speed of light
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Setting the pulse duration equal to the focal range (L/c)  
results in an “infinitely” fast focal velocity (line focus)
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A simulation of the focal region shows that the peak intensity  
of the flying focus propagates with a self-similar form

The longitudinal profile of the intensity peak depends only on space 
and time in the combination
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Outline

• Description of the flying focus

• Experimental demonstration of the flying focus

• Ionization waves of arbitrary velocity (IWAV’s) 

• Applications of the flying focus
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The Multi-Terawatt (MTW) laser at the University of Rochester’s Laboratory  
for Laser Energetics (LLE) was used to demonstrate the flying focus

• OPCPA front end and Nd:glass amplifiers 
(1053-nm, 10-nm bandwidth)

• 0.7 ps to 300 ps up to 50 J
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OPCPA: optical parametric chirped-pulse amplifier 
SHG: second-harmonic generation
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A picosecond optical streak camera imaged  
the intensity profile of the flying focus
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The measurements show excellent agreement with the analytic calculations
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The measured images provided space and time information that  
were reconstructed to generate the focal intensity in space
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The images form a movie of the flying focus (~3 ps/frame)
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The images form a movie of the flying focus (~3 ps/frame)
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Outline

• Description of the flying focus

• Experimental demonstration of the flying focus

• Ionization waves of arbitrary velocity (IWAV’s) 

• Applications of the flying focus
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The flying focus pulse can be used to generate  
an ionization wave of arbitrary velocity (IWAV)

Counter-propagating flying focus mitigates ionization-induced refraction.
J. P. Palastro et al., Phys. Rev. A 97, 033835 (2018). 




0 0.0
420–2–4

0.4

0.8

1.2

2

4

6

In
te

ns
ity

 (#
10

13
 W

/c
m

2 )

n e
 / n

g0

z – f (mm)

E27813a

23

Distance (mm)

Gas

N
or

m
al

iz
ed

 
in

te
ns

ity
Pu

m
p 

ra
di

us
 (m

m
)

–15 –10
0.0

0.5

1.0

2

–2
–1
0
1

–5 0 5 10 15

The flying focus pulse can be used to generate an IWAV

J. P. Palastro et al., Phys. Rev. A 97, 033835 (2018). 




TC14137c

A counter-propagating flying focus mitigates plasma 
refraction and produces a sharp ionization front

24

100
vf = –0.5c

50

0
420

z – f (mm)
–2–4

t (
ps

)

0.0

0.2

0.4

0.6

0.8

1.0

0

6

4

2

In
te

ns
ity

 (#
10

13
 W

/c
m

2 )

n
e 

/ n
g

0

Speed of light frame
(p = ct – z) (nm)

100 200 300 4000–100

El
ec

tr
on

 d
en

si
ty

(1
02

0  
cm

–3
)



E27812

To study IWAV’s in the laboratory, a spectrally resolved  
schlieren diagnostic was used
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The analytic calculations and simulations are in  
excellent agreement with the measurements
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D. Turnbull et al., Phys. Rev. Lett. 120, 024801 (2018);
D. Turnbull et al., CO8.00012 this conference.
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Outline

• Description of the flying focus

• Experimental demonstration of the flying focus

• Ionization waves of arbitrary velocity (IWAV’s) 

• Applications of the flying focus
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The flying focus could be used extend the interaction  
length in a photon accelerator

A photon accelerator uses a time-varying refractive  
index to increase the group velocity of light
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The flying focus could be used extend the interaction  
length in a photon accelerator

A photon accelerator uses a time-varying refractive  
index to increase the group velocity of light
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The flying focus could be used extend the interaction  
length in a photon accelerator

A photon accelerator uses a time-varying refractive  
index to increase the group velocity of light

30

Index of refraction

Frequency shift

Funded by DE-SC0019135 (PI Turnbull)

–n 1 p 2

~
~

= b l np e?~

– L
Z1 p

s
effective

2
T

~
~

~
~ = b l

As the photons accelerate they eventually outrun the 
 ionization front in a “conventional” photon accelerator.
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By using the flying focus to generate ionization waves  
propagating at the speed of light, optical light can  
be frequency converted to the extreme ultraviolet

31

Andy Howard

A. Howard et al., in preparation for Phys. Rev. Lett.;
A. Howard et al., PP11.00006, this conference.

The photon accelerator driven by a flying focus could convert optical light to the extreme ultraviolet (100 nm).
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By using the flying focus to generate ionization waves  
propagating at the speed of light, optical light can  
be frequency converted to the extreme ultraviolet
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Andy Howard

The photon accelerator driven by a flying focus could convert optical light to the extreme ultraviolet (100 nm).
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A counter-propagating ionization wave could overcome  
several challenges of Raman amplification

• Constant longitudinal intensity: the seed pulse 
experiences a constant pump intensity over the 
entire amplifier length

• Counter-propagating ionization wave: the pump 
will propagate through gas-eliminating parasitic 
instabilities

• Plasma conditions: the plasma conditions observed 
by the seed will be constant and controllable
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A counter-propagating ionization wave could overcome  
several challenges of Raman amplification

• Constant longitudinal intensity: the seed pulse 
experiences a constant pump intensity over the 
entire amplifier length

• Counter-propagating ionization wave: the pump 
will propagate through gas-eliminating parasitic 
instabilities

• Plasma conditions: the plasma conditions observed 
by the seed will be constant and controllable
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The flying focus could enable new sources by decoupling  
the group velocity of light from the driver velocity

35

* J. Palastro et al., in preparation Phys. Rev. Lett.;
  J. Palastro et al., JO8.00008, this conference.

Cherenkov radiation 
(THz source*)

The flying focus can generate Cherenkov 
radiation in a plasma
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The flying focus can be used to phase match THz radiation  
in a crystal and extend the frequency-conversion process  
by orders of magnitude

36

* K. L. Nguyen in preparation Phys. Rev. Lett.

Simulations show on-axis phase matching in crystals over  
1 cm,* otherwise constrained to off-axis phase matching.

A zoom lens system enables the flying focus  
velocity to be tuned for a given chrip.
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The flying focus enables a novel mechanism  
for direct vacuum electron acceleration*

37

Dillon Ramsey

PAS  
Grad student

Lawson–Woodward Theorem: the net energy gain  
for an electron in a laser pulse is zero.

* D. Ramsey et al., in preparation Phys. Rev. Lett.
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In a flying focus pulse, electrons that overtake the laser pulse  
will exit with a longitudinal momentum
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Flying focus overcomes the Lawson–Woodward Theorem:
electrons can extract energy from the laser pulse.

Time (fs)
150 200 250100500Time

D
is

ta
nc

e

Electron
trajectory

Sp
ee

d 
of

 li
gh

t

Laser intensity
Longitudinal momentum

Lo
ng

itu
di

na
l 

m
om

en
tu

m
 (m

ec
)



E27817

39

This decoupling has the potential to enable or improve several laser-based applications.

Summary/Conclusions 

A chirped laser pulse focused by a chromatic lens  
exhibits a dynamic, or “flying,” focus*

* D. H. Froula et al., Nat. Photonics 12, 262 (2018).
  A. Sainte-Marie, O. Gobert, and F. Quéré, Optica 4, 1298 (2017).

• The flying focus provides unprecedented spatiotemporal control over  
laser–plasma interactions by decoupling

 – the spot size of the pulse from the focal range
 – the velocity of the peak intensity from the group velocity

• Experiments have demonstrated the flying focus and the ability  
to generate ionization waves at any velocity (IWAV)

• Flying focus was applied to several applications
 – photon accelerator: IWAV’s can shift visible laser light to the XUV
 – Raman amplification: flying focus could overcome several  
challenges of laser-plasma amplifiers

 – Cherenkov radiation: flying focus allows new radiation sources
 – vacuum electron acceleration: flying focus enables vacuum acceleration
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Thank you for your attention
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CO8.00012

Ionization Waves of Arbitrary Velocity 
4:12 pm, Monday, Nov. 5

J. Palastro 
JO8.00008

Cherenkov Radiation from a Plasma 
3:24 pm, Tuesday, Nov. 6

A. Howard 
JO8.00015

Photon Acceleration in the 
Ionization Front of a Flying Focus 
4:48 pm, Tuesday, Nov. 6

P. Franke 
UP11.00093

Ionization Waves of Arbitrary Velocity 
2:00 pm, Thursday, Nov. 8

3-D calculations
(counter-propagating flying focus)







