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Imploded cryogenic DT shells can be radiographed late in the deceleration 
phase by their own core emission

•	 This diagnostic uses the spectral content of at least three monochromatic 
images and a three-parameter spectral model to determine the shell optical 
thickness, one pixel at a time 

•	 Core self-emission is the backlighter in self-radiography, unlike externally 
backlit radiography, where self-emission is the limiting background

•	 Self-radiography of cryo implosions is an advance over earlier self-backlighting 
that depended on the K-edges and spectral lines of additives* 
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Summary

*	V. A. Smalyuk, et al., Phys. Rev. Lett. 87, 155002 (2001);
		L. A. Pickworth, et al., Phys. Rev. Lett 117, 035001 (2016).
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Core self-emission is the limiting background in externally backlit radiography, 
but in self-radiography, core self-emission is the backlighter

•	 Three intensities, I(o1), I(o2), I(o3), determine the parameters A, T, and x at each pixel

•	 T is a chord-averaged, emission-weighted harmonic mean of a highly variable temperature profile*
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•	 Soft external backlighters are overwhelmed by core self-emission near peak conditions
•	 We rely on the simple atomic physics of free–free opacity and emissivity; no additives needed

*	D. M. Cao et al., BO7.00002, this conference.
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The preferred optical thickness, x ≈ 1, is obtained at the onset of peak 
conditions near ho ≈ 2 keV
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•	 HDT continuum spectroscopy using: 
 ( )I h Ae e– –h kT 0
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	*	Spect3D, Prism Computational Sciences Inc., Madison, WI 53711.
**	F. J. Marshall et al., Phys. Rev. E 49, 4381 (1994).
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Estimates of the three continuum parameters can be very uncertain if the 
intensity measurements are imprecise or the bandwidth is too narrow
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Even a rough prior constraint on T tightens the x estimate variance dx significantly 

•	 Assume three samples of the spectrum at Do near o = o0

•	 Assume intensity measurement precision vI  and a prior temperature precision vT 
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•	 Perform a formal error analysis 
of the continuum model:
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Synthetic monochromatic image data was constructed from a DRACO/Spect3D 
simulation of a cryo implosion near peak compression

•	 Inhomogeneous core and shell tests the simplicity of the 3-parameter continuum model

•	 2-D geometry tests the simplifying assumption that absorption follows emission
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With multi-monochromatic images, the emission and absorption contributions 
to the total image can be separated
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The radiograph, based on spectral analysis, recovers nearly all of the actual 
projected optical thickness profile of the shell
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Summary/Conclusions 

*	V. A. Smalyuk, et al., Phys. Rev. Lett. 87, 155002 (2001);
		L. A. Pickworth, et al., Phys. Rev. Lett 117, 035001 (2016).

Imploded cryogenic DT shells can be radiographed late in the deceleration 
phase by their own core emission

•	 This diagnostic uses the spectral content of at least three monochromatic 
images and a three-parameter spectral model to determine the shell optical 
thickness, one pixel at a time 

•	 Core self-emission is the backlighter in self-radiography, unlike externally 
backlit radiography, where self-emission is the limiting background

•	 Self-radiography of cryo implosions is an advance over earlier self-backlighting 
that depended on the K-edges and spectral lines of additives* 
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Multi-monochromatic imaging (MMI) has been successfully applied  
to line-spectral imaging and may be similarly applied  
to continuum-spectral imaging 

•	 Pinhole array used by H. Azechi et al., Appl. Phys. Lett. 
37, 998 (1980) 

•	 Development and successful applications to Ar-filled 
shells by Koch, Nagayama, Welser, Nagayama, Mancini, 
Florido, many references

•	 Based on an early application to Ar-filled implosion  
[J. A. Koch et al., Rev. Sci. Instrum. 76, 073708 (2005)], 
Bragg reflection at 6.6°!1.26° for Ar corresponds to 
reflection at 13.4°!1.51° in the same instrument for the 
spectral range 1.6 to 2.0 keV

•	 Fresnel lenses are a promising development, with high 
resolution (~1 nm) and high throughput 
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•	 Ti-doped imploding shell imaged with 
pinhole array and Bragg reflector by 
B. Yaakobi, F. J. Marshall, and D. K. 
Bradley, Appl. Opt. 37, 8074 (1998)
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LILAC/Spect3D simulation of cryo shot 82383 validates the simplifying 
assumption of emission only in the core and absorption only in the shell
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Shot 82383, LILAC/Spect3D line-of-sight “drilldown,”
t = 3.31 ns, peak neutron production
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Three spectral channels allow temperature and optical thickness  
to be estimated at each resolution element based on their distinct  
spectral signatures
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Shot 82383, LILAC/Spect3D
t = 3.31 ns, peak neutron production
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kT is an emission-weighted harmonic mean of a highly variable temperature profile.
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DRACO/Spect3D monochromatic images of shot 81590 provide
a more-stringent test of the spectral fitting method
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