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OMEGA results confirm that magnetization and preheating increase yield  
and reduce convergence ratio

•	 Laser-driven MagLIF on OMEGA provides data at 1000# lower drive energy 
than Z with targets 10# smaller in linear dimensions

•	 OMEGA results indicate that initial magnetic fields >15 T and initial deuterium 
densities >1 mg/cm3 planned for Z should significantly increase yields

•	 The results from OMEGA and Z will be compared to simulations with the same 
codes to increase confidence in extrapolating to energy gain
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Summary

MagLIF: magnetized liner inertial fusion
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MagLIF is an inertial confinement fusion (ICF) scheme using magnetized, 
preheated fuel to allow for cylindrical implosions with lower velocities 
and lower convergence ratios than conventional ICF*

•	 An axial magnetic field lowers electron thermal conductivity allowing a near-adiabatic compression 
at lower implosion velocities and confines alpha particles if BR > 0.6 T-m, allowing a lower areal density 

•	 Preheating to ~100 eV makes it possible for >1 keV to be reached at a convergence ratio <30
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*S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010).
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OMEGA can carry out magnetized, preheated, cylindrical compressions, 
allowing a scaled-down version of MagLIF on Z*
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*	D. H. Barnak et al., Phys. Plasmas 24, 056310 (2017). 
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*	D. H. Barnak et al., Phys. Plasmas 24, 056310 (2017). 
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*	D. H. Barnak et al., Phys. Plasmas 24, 056310 (2017). 

#2.7 mg/cm3 DD



Laser
beam

Laser entrance
hole with CH foil

Start of liner
compression

Laser-
heated

fuel

Preheat beam

Axial-field coils

40 beams for
compression

OMEGA: 14.5 kJ
~1 kJ in target
r = 0.3 mm

Z: 19 MA
~1 MJ in target
r = 3 mm

Axial-field coils
not shown

Point design: T0 = 250 eV
Experiments: T0 < 100 eV

Point design: 30 T
Experiments: 10 T

T0 ~ 200 eV
Initial design: 10 T

Point design: 3 mg/cm3 DT
Experiments: 0.7 mg/cm3 DD

1000# in drive energy

10# in linear dimensions
#2.7 mg/cm3 DD

E27821d

OMEGA can carry out magnetized, preheated, cylindrical compressions, 
allowing a scaled-down version of MagLIF on Z*
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*	D. H. Barnak et al., Phys. Plasmas 24, 056310 (2017). 
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OMEGA targets will not achieve magnetic confinement of fusion products*  
and will have higher thermal and flux losses than Z

•	 Magnetic confinement of charged fusion products (T from DD fusion, He from DT fusion) is determined 
by the ratio of Larmor radius to fuel radius 

–– increasing magnetic field 10# would lead to magnetic pressure, reducing convergence and heating

•	 The greater surface area to volume ratio in smaller targets will lead to greater heat loss

•	 Magnetic-flux loss will increase because diffusion time scales as r2 and Nernst velocity as 1/r

•	 Aim for a design with an implosion velocity at least twice that of the Z point design by increasing 
the shell aspect ratio

–– v > 140 km/s, aspect ratio > 6 (thickness <50 nm)
–– estimate that Tfinal ? (Ct0r0v)2/5, assuming unmagnetized ion thermal conduction dominates heat 
loss during compression, where C is convergence ratio, t0 is fuel density, r0 is fuel radius, and v is 
implosion velocity, so doubling v will maintain Tfinal within a factor of 2

–– ablative stabilization of the Rayleigh–Taylor instability and the absence of magnetohydrodynamic 
(MHD) modes means that laser-driven MagLIF should allow a higher aspect ratio
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*	P. F. Schmit et al.,Phys. Rev. Lett. 113, 155004 (2014).



One-dimensional LILAC* simulations were used to choose the pulse length 
and fuel density for shell aspect ratios from 6 to 15**

TC13141a
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	*	J. R. Davies et al., Phys. Plasmas 22, 112703 (2015). 
**	J. R. Davies et al., Phys. Plasmas 24, 062701 (2017).

Aspect ratio $ 10, 1.5-ns pulse length, fuel density $ 2.4 mg/cm3  
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Scans of the preheat temperature and axial magnetic field showed a threshold 
preheat of ~100 eV and improved performance with fields up to 30 T  

15
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Laser transmission and reflection and soft x-ray emission were measured  
and compared to 2-D DRACO simulations
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Foil transmission exceeded simulations, sidescattered transmission  
and total reflection were negligible, and reflection from full targets  
was the same as for foils* 

18

*	J. R. Davies et al., Phys. Plasmas 25, 062704 (2018).
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Soft x-ray emission measurements showed that the gas was preheated in 
excess of 100 eV and that simulations overestimated the window emission

Sample channel (~keV) from the Dante spectrometer looking into the window of full target shots
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Simulations match the gas temperature to within 10 eV.
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OMEGA is designed to distribute 60 beams uniformly over a sphere so it does 
not lend itself to uniform compression of a cylinder

•	 The cylinder is aligned with a pent axis to use the P9 
beam port for the preheating beam

–– added a 3~ beam capability to P9 using a different 
beam for this project

•	 20 beams (rings 1 and 2) cannot be used because they 
are at glancing angles of incidence

•	 The remaining 40 beams are arranged in rings of 10 at 
!31.15º (rings 3) and !8.75º (rings 4) to the cylinder axis

•	 Increasing angles to the axis lead to lower intensities 
on the target surface, to reflection in the corona at 
a lower density, and to the beams crossing different 
positions at different radii

21
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X-ray framing-camera images of self-emission were used to determine 
implosion velocity and axial uniformity
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The separation and energy balance between rings 3 and 4 that maximize the 
uniformly imploded length were determined experimentally in three steps*

Determine the intensity reduction 
required to reproduce the 

x-ray implosion velocity in 1-D 
simulations (normal to target axis)

IR3-1D = 0.49 Ilaser
IR4-1D = 0.89 Ilaser

23

*	E. C. Hansen et al., Plasma Phys. Control. Fusion 60, 054014 (2018). 

(1) Single-ring shots
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The separation and energy balance between rings 3 and 4 that maximize the 
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*	E. C. Hansen et al., Plasma Phys. Control. Fusion 60, 054014 (2018). 
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The separation and energy balance between rings 3 and 4 that maximize the 
uniformly imploded length were determined experimentally in three steps*

Increase separation between 
the rings to reproduce the effect 
of reducing ring-3 energy while 

driving a longer region

Overdrive the ends
Reduce ring-4 energy to 83% 

(matches ring-3 intensity)
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*	E. C. Hansen et al., Plasma Phys. Control. Fusion 60, 054014 (2018). 
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The separation and energy balance between rings 3 and 4 that maximize the 
uniformly imploded length were determined experimentally in three steps*
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*	E. C. Hansen et al., Plasma Phys. Control. Fusion 60, 054014 (2018). 
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Three-dimensional HYDRA can reproduce the results with a 10% reduction  
in ring-4 energy and a flux limiter of 0.09
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The baseline experimental setup uses a 20-nm-thick, 0.29-mm-radius 
parylene-N target, filled with 1.8 mg/cm3 D2, in a 9-T axial magnetic field driven 
by 1.5-ns-long square shaped pulses
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The initial axial magnetic field has been increased to 27 T by using two MIFEDS 
conical coils and thinner wire insulation with the wires glued to the holder

30

Old design, single MIFEDS, 9 T New design, dual MIFEDS, 27 T
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Neutron yields are significantly increased by magnetization and preheat
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	J. R. Davies et al., Phys. Plasmas 24, 062701 (2017).
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Optimum preheat energy is lower than expected and the fall in yield above 
optimum preheat is faster than expected
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	J. R. Davies et al., Phys. Plasmas 24, 062701 (2017).
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Neutron-averaged ion temperatures show the same trends as neutron yields
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Fuel areal density tR inferred from the secondary DT neutron yield is reduced 
by magnetization and preheat

34

Magnetization and preheat give higher yield and higher temperature at lower convergence.
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Lowering the fuel density closer to the 0.7 mg/cm3 used on Z significantly 
lowered the yield
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	J. R. Davies et al., Phys. Plasmas 24, 062701 (2017).



Compared to experiments on Z, the yield enhancements caused by 
magnetization and preheating are lower because the compression-only 
baseline is more stable
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Summary/Conclusions 

OMEGA results confirm that magnetization and preheating increase yield  
and reduce convergence ratio

•	 Laser-driven MagLIF on OMEGA provides data at 1000# lower drive energy 
than Z with targets 10# smaller in linear dimensions

•	 OMEGA results indicate that initial magnetic fields >15 T and initial deuterium 
densities >1 mg/cm3 planned for Z should significantly increase yields

•	 The results from OMEGA and Z will be compared to simulations with the same 
codes to increase confidence in extrapolating to energy gain
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Mean D2 density, magnetic field, preheat energy, DD neutron yield,  
neutron-averaged ion temperature, fuel areal density inferred from DT yield, 
and time of peak neutron emission by shot type

38

Type (number of shots) t (mg/cm3) B (T) EP9 (J) YDD (108) Ti (keV) tR/tR0 tp (ns)

Compression only (4) 1.85!0.03 0 0 11.4!2.1 2.00!0.5 22.5!4.7 1.57!0.15
Preheated (3) 1.81!0.02 0 176!3.1 13.8!2.2 2.09!0.5 19.6!3.9 1.54!0.08

Magnetized 9 T (2) 1.87!0.02 9 0 17.6!1.3 2.57!0.5 13.2!2.7 1.59!0.05

Magnetized 26 T (2) 1.63!0.14 25.5!1.5 0 7.24!1.7 2.29!0.5 17.0!6.8 1.58!0.04

Integrated 9 T, 180 J (1) 1.80 9 172 16.1!0.43 2.34!0.5 <13 1.37!0.17
Integrated 27 T, 180 J (1) 1.77 27 165 25.8!0.51 2.70!0.5 10.5!2.9 1.53!0.15
Integrated 27 T, 90 J (2) 1.78!0.03 27 93.3 37.1!3.9 2.91!0.5 8.08!2.14 1.43!0.19

Integrated 27 T, 70 J (2) 1.78!0.02 27 69.1!1.1 51.3!3.3 3.14!0.5 8.80!2.20 1.52!0.26
Compression 1.1 mg/cm3 (2) 1.19!0.002 0 0 3.62!0.25 2.06!0.5 <82 1.50!0.15

Magnetized 9 T, 1.1 mg/cm3 (2) 1.20!0.005 10 0 5.64!0.85 2.10!0.5 38.4!7.9 1.49!0.05



Comparison of point design and experimental parameters for Z and OMEGA

E27841

39

Parameter Z point design Z experiments X point design X experiments

Aspect ratio Δr/r 6 6 to 9 10 to 15 14.5
Fuel density (mg/cm3) 3 (DT) 0.7 (DD) 2.4 to 2.7 (DD) 1.1 to 1.8 (DD)

Axial magnetic field (T) 30 0 to 15 10 0 to 27
Mean preheat (eV) 250 0 to 100 200 0 to 200

Implosion velocity (km/s) 70 ~50 150 to 190 200
Fuel convergence ratio 25 ~40 25 16 to 30

Neutron yield – Up to 1013 – Up to 5 # 109

Ion temperature (keV) – Up to 3 – Up to 3


