Laser-Driven Magnetized Liner Inertial Fusion on OMEGA

Axial-field coils

OMEGA: 14.5 kJ ~1 kJ in target *r* = 0.3 mm

40 beams for compression

60th Annual Meeting of the American Physical Society Division of Plasma Physics Portland, OR 5–9 November 2018

OMEGA results confirm that magnetization and preheating increase yield and reduce convergence ratio

- Laser-driven MagLIF on OMEGA provides data at 1000× lower drive energy than Z with targets $10 \times$ smaller in linear dimensions
- OMEGA results indicate that initial magnetic fields >15 T and initial deuterium densities >1 mg/cm³ planned for Z should significantly increase yields
- The results from OMEGA and Z will be compared to simulations with the same codes to increase confidence in extrapolating to energy gain

MagLIF: magnetized liner inertial fusion

Collaborators

D. H. Barnak,¹ R. Betti, P.-Y. Chang,² V. Yu. Glebov, E. C. Hansen, J. P. Knauer, J. L. Peebles, and A. B. Sefkow

> University of Rochester Laboratory for Laser Energetics

K. J. Peterson and D. B. Sinars

Sandia National Laboratories

This project is funded by the Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E).

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003856.

¹Now at LANL ²Now at NCKU, Taiwan

Outline

- What is MagLIF?
- Scaling down MagLIF from Z to OMEGA
- Preheat experiments
- Optimizing cylindrical compression
- Results

Outline

• What is MagLIF?

- Scaling down MagLIF from Z to OMEGA
- Preheat experiments
- Optimizing cylindrical compression
- Results

MagLIF is an inertial confinement fusion (ICF) scheme using magnetized, preheated fuel to allow for cylindrical implosions with lower velocities and lower convergence ratios than conventional ICF*

- An axial magnetic field lowers electron thermal conductivity allowing a near-adiabatic compression at lower implosion velocities and confines alpha particles if BR > 0.6 T-m, allowing a lower areal density
- Preheating to ~100 eV makes it possible for >1 keV to be reached at a convergence ratio <30

*S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010).

Outline

- What is MagLIF?
- Scaling down MagLIF from Z to OMEGA
- Preheat experiments
- Optimizing cylindrical compression
- Results

ROCHESTER

Initial design: 10 T

Axial-field coils

OMEGA: 14.5 kJ ~1 kJ in target *r* = 0.3 mm

40 beams for compression

ROCHESTER

Initial design: 10 T

Axial-field coils

OMEGA: 14.5 kJ ~1 kJ in target *r* = 0.3 mm

40 beams for compression

ROCHESTER

Initial design: 10 T

Axial-field coils

OMEGA: 14.5 kJ ~1 kJ in target *r* = 0.3 mm

40 beams for compression

ROCHESTER

Initial design: 10 T

Axial-field coils

OMEGA: 14.5 kJ ~1 kJ in target *r* = 0.3 mm

40 beams for compression

ROCHESTER

Initial design: 10 T

Axial-field coils

OMEGA: 14.5 kJ ~1 kJ in target *r* = 0.3 mm

40 beams for compression

OMEGA targets will not achieve magnetic confinement of fusion products^{*} and will have higher thermal and flux losses than Z

- Magnetic confinement of charged fusion products (T from DD fusion, He from DT fusion) is determined by the ratio of Larmor radius to fuel radius
 - increasing magnetic field $10 \times$ would lead to magnetic pressure, reducing convergence and heating
- The greater surface area to volume ratio in smaller targets will lead to greater heat loss
- Magnetic-flux loss will increase because diffusion time scales as r^2 and Nernst velocity as 1/r
- Aim for a design with an implosion velocity at least twice that of the Z point design by increasing the shell aspect ratio
 - -v > 140 km/s, aspect ratio > 6 (thickness <50 μ m)
 - estimate that $T_{\text{final}} \propto (C \rho_0 r_0 v)^{2/5}$, assuming unmagnetized ion thermal conduction dominates heat loss during compression, where C is convergence ratio, ρ_0 is fuel density, r_0 is fuel radius, and v is implosion velocity, so doubling v will maintain T_{final} within a factor of 2
 - ablative stabilization of the Rayleigh–Taylor instability and the absence of magnetohydrodynamic (MHD) modes means that laser-driven MagLIF should allow a higher aspect ratio

*P. F. Schmit et al., Phys. Rev. Lett. 113, 155004 (2014).

One-dimensional *LILAC** simulations were used to choose the pulse length and fuel density for shell aspect ratios from 6 to 15**

Aspect ratio \geq 10, 1.5-ns pulse length, fuel density \geq 2.4 mg/cm³

*J. R. Davies et al., Phys. Plasmas 22, 112703 (2015). **J. R. Davies et al., Phys. Plasmas 24, 062701 (2017).

Scans of the preheat temperature and axial magnetic field showed a threshold preheat of ~100 eV and improved performance with fields up to 30 T

Outline

- What is MagLIF?
- Scaling down MagLIF from Z to OMEGA
- Preheat experiments
- Optimizing cylindrical compression
- Results

Laser transmission and reflection and soft x-ray emission were measured and compared to 2-D DRACO simulations

Ports 25, 30, and H17C collect time-resolved spectra of the laser light

Foil transmission exceeded simulations, sidescattered transmission and total reflection were negligible, and reflection from full targets was the same as for foils*

190 J:	Direct transmission	Sidescatter	Reflection	Foil abso
Foil	65.5±2.0%	0.72±0.22%	0.61±0.10%	33.2±2
Full targets	_	_	0.59±0.22%	-
Simulations	55.9%	0.0%	1.6%	42.4

*J. R. Davies et al., Phys. Plasmas 25, 062704 (2018).

– 0° transmission
– 16.6° transmission
– 24.8° transmission
… 0° reflection
- 16.6° reflection
... 24.8° reflection

orption

2.0%

1%

Soft x-ray emission measurements showed that the gas was preheated in excess of 100 eV and that simulations overestimated the window emission

Simulations match the gas temperature to within 10 eV.

Outline

- What is MagLIF?
- Scaling down MagLIF from Z to OMEGA
- Preheat experiments
- Optimizing cylindrical compression
- Results

E27820d

OMEGA is designed to distribute 60 beams uniformly over a sphere so it does not lend itself to uniform compression of a cylinder

- The cylinder is aligned with a pent axis to use the P9 beam port for the preheating beam
 - added a 3ω beam capability to P9 using a different beam for this project
- 20 beams (rings 1 and 2) cannot be used because they are at glancing angles of incidence
- The remaining 40 beams are arranged in rings of 10 at \pm 31.15° (rings 3) and \pm 8.75° (rings 4) to the cylinder axis
- Increasing angles to the axis lead to lower intensities on the target surface, to reflection in the corona at a lower density, and to the beams crossing different positions at different radii

X-ray framing-camera images of self-emission were used to determine implosion velocity and axial uniformity

X-ray emission from 1 to 1.8 ns

(1) Single-ring shots

Determine the intensity reduction required to reproduce the x-ray implosion velocity in 1-D simulations (normal to target axis)

> $I_{\rm R3-1D} = 0.49 I_{\rm laser}$ $I_{\text{R4-1D}} = 0.89 I_{\text{laser}}$

(1) Single-ring shots

Determine the intensity reduction required to reproduce the x-ray implosion velocity in 1-D simulations (normal to target axis)

> $I_{\rm R3-1D} = 0.49 I_{\rm laser}$ $I_{\rm R4-1D} = 0.89 I_{\rm laser}$

(2) Initial pointing

Achieve uniform effective intensity by fully overlapping rings 3 at the center with rings 4 at the ends

Overdrive the center Reduce ring 3 energy to obtain a uniform implosion

E27828a

*E. C. Hansen et al., Plasma Phys. Control. Fusion 60, 054014 (2018).

(1) Single-ring shots

Determine the intensity reduction required to reproduce the x-ray implosion velocity in 1-D simulations (normal to target axis)

> $I_{\rm R3-1D} = 0.49 I_{\rm laser}$ $I_{\rm R4-1D} = 0.89 I_{\rm laser}$

(2) Initial pointing

Achieve uniform effective intensity by fully overlapping rings 3 at the center with rings 4 at the ends

Overdrive the center Reduce ring 3 energy to obtain a uniform implosion

(3) **Repointing**

Increase separation between the rings to reproduce the effect of reducing ring-3 energy while driving a longer region

Overdrive the ends **Reduce ring-4 energy to 83%** (matches ring-3 intensity)

(1) Single-ring shots

Determine the intensity reduction required to reproduce the x-ray implosion velocity in 1-D simulations (normal to target axis)

> $I_{\rm R3-1D} = 0.49 I_{\rm laser}$ $I_{B4-1D} = 0.89 I_{laser}$

(2) Initial pointing

Achieve uniform effective intensity by fully overlapping rings 3 at the center with rings 4 at the ends

Overdrive the center Reduce ring 3 energy to obtain a uniform implosion

The implosion velocity is 200 ± 4 km/s over a region 0.6-mm long

E27828c

*E. C. Hansen et al., Plasma Phys. Control. Fusion 60, 054014 (2018).

(3) **Repointing**

Increase separation between the rings to reproduce the effect of reducing ring-3 energy while driving a longer region

Overdrive the ends **Reduce ring-4 energy to 83%** (matches ring-3 intensity)

Three-dimensional HYDRA can reproduce the results with a 10% reduction in ring-4 energy and a flux limiter of 0.09

E. C. Hansen et al., "Optimization of Laser-Driven Cylindrical Implosions on the OMEGA Laser," submitted to Physics of Plasmas.

Outline

- What is MagLIF?
- Scaling down MagLIF from Z to OMEGA
- Preheat experiments
- Optimizing cylindrical compression
- Results

The baseline experimental setup uses a 20- μ m-thick, 0.29-mm-radius parylene-N target, filled with 1.8 mg/cm³ D_2 , in a 9-T axial magnetic field driven by 1.5-ns-long square shaped pulses

*Magneto-inertial fusion electrical discharge system

The initial axial magnetic field has been increased to 27 T by using two MIFEDS conical coils and thinner wire insulation with the wires glued to the holder

Old design, single MIFEDS, 9 T

New design, dual MIFEDS, 27 T

Neutron yields are significantly increased by magnetization and preheat

J. R. Davies et al., Phys. Plasmas 24, 062701 (2017).

Optimum preheat energy is lower than expected and the fall in yield above optimum preheat is faster than expected

J. R. Davies et al., Phys. Plasmas 24, 062701 (2017).

Neutron-averaged ion temperatures show the same trends as neutron yields

Fuel areal density ρR inferred from the secondary DT neutron yield is reduced by magnetization and preheat

Magnetization and preheat give higher yield and higher temperature at lower convergence.

E27837

Lowering the fuel density closer to the 0.7 mg/cm³ used on Z significantly lowered the yield

E27838

J. R. Davies et al., Phys. Plasmas 24, 062701 (2017).

Compared to experiments on Z, the yield enhancements caused by magnetization and preheating are lower because the compression-only baseline is more stable

Z baseline experiments					
	<i>B_z</i> = 0 T	<i>B_z</i> = 10 T			
No preheat	0.003 × 10 ¹² ∼1 keV	0.01 × 10 ¹² ∼1 keV			
Preheat	0.04 × 10 ¹² ∼1 keV	$3 imes 10^{12}$ 2.5 keV			
CX 10 227 0 6 4 0 -1 0 39	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Counts ×1000 8 6 4 2 0			

OME	GA baseline experi
	<i>B_z</i> = 0 T
No preheat	$1 imes 10^9$ 2.0 keV
Preheat	1.4 × 10 ⁹ 2.1 keV

Any type of shot on OMEGA

E2783

KOCHESTER

ments

Bz	=	10	Т
_			

1.8 × 10⁹ 2.6 keV

1.6 × 10⁹ 2.3 keV

OMEGA results confirm that magnetization and preheating increase yield and reduce convergence ratio

- Laser-driven MagLIF on OMEGA provides data at 1000× lower drive energy than Z with targets $10 \times$ smaller in linear dimensions
- OMEGA results indicate that initial magnetic fields >15 T and initial deuterium densities >1 mg/cm³ planned for Z should significantly increase yields
- The results from OMEGA and Z will be compared to simulations with the same codes to increase confidence in extrapolating to energy gain

37

Mean D₂ density, magnetic field, preheat energy, DD neutron yield, neutron-averaged ion temperature, fuel areal density inferred from DT yield, and time of peak neutron emission by shot type

Type (number of shots)	ho (mg/cm ³)	<i>B</i> (T)	<i>Е</i> _{Р9} (J)	Y _{DD} (10 ⁸)	T _i (keV)	$ ho$ R/ $ ho$ R_0	<i>t</i> p (ns)
Compression only (4)	1.85±0.03	0	0	11.4±2.1	2.00±0.5	22.5±4.7	1.57±0.15
Preheated (3)	1.81±0.02	0	176±3.1	13.8±2.2	2.09±0.5	19.6±3.9	1.54±0.08
Magnetized 9 T (2)	1.87±0.02	9	0	17.6±1.3	2.57±0.5	13.2±2.7	1.59±0.05
Magnetized 26 T (2)	1.63±0.14	25.5±1.5	0	7.24±1.7	2.29±0.5	17.0±6.8	1.58±0.04
Integrated 9 T, 180 J (1)	1.80	9	172	16.1±0.43	2.34±0.5	<13	1.37±0.17
Integrated 27 T, 180 J (1)	1.77	27	165	25.8±0.51	2.70±0.5	10.5±2.9	1.53±0.15
Integrated 27 T, 90 J (2)	1.78±0.03	27	93.3	37.1±3.9	2.91±0.5	8.08±2.14	1.43±0.19
Integrated 27 T, 70 J (2)	1.78±0.02	27	69.1±1.1	51.3±3.3	3.14±0.5	8.80±2.20	1.52±0.26
Compression 1.1 mg/cm ³ (2)	1.19±0.002	0	0	3.62±0.25	2.06±0.5	<82	1.50±0.15
Magnetized 9 T, 1.1 mg/cm ³ (2)	1.20±0.005	10	0	5.64±0.85	2.10±0.5	38.4±7.9	1.49±0.05

Comparison of point design and experimental parameters for Z and OMEGA

Parameter	Z point design	Z experiments	Ω point design	Ω ex
Aspect ratio ∆ <i>r/r</i>	6	6 to 9	10 to 15	
Fuel density (mg/cm ³)	3 (DT)	0.7 (DD)	2.4 to 2.7 (DD)	1.1 t
Axial magnetic field (T)	30	0 to 15	10	
Mean preheat (eV)	250	0 to 100	200	0
Implosion velocity (km/s)	70	~50	150 to 190	
Fuel convergence ratio	25	~40	25	1
Neutron yield	-	Up to 10 ¹³	-	Up
Ion temperature (keV)	-	Up to 3	-	l

xperiments

- 14.5
- to 1.8 (DD)
- 0 to 27
-) to 200
- 200
- 16 to 30
- to 5×10^9
- Up to 3