Revolver Designs for the National Ignition Facility **Using Current and Optimized Phase Plates**

Summary

The drive uniformity of *Revolver* designs can be improved using custom phase plates

- The implosion velocity uniformity is improved using beam spots that are stretched in the azimuthal direction
 - $\Delta v/v \sim$ 2.5% for current phase plates
 - $\Delta v/v \sim$ 1.2% for custom phase plates
- The *Revolver* target operates in a regime with nearly 100% inverse-bremsstrahlung absorption

Collaborators

Y. Yang,* E. M. Garcia,* and P. W. McKenty

University of Rochester Laboratory for Laser Energetics (*LLE Summer High School Research Program)

M. J. Schmitt and K. Molvig

Los Alamos National Laboratory

The *Revolver* design proposed by Molvig *et al.** was used for this work

• Only the interaction of the laser pulse with the Be shell was modeled

*K. Molvig et al., Phys. Rev. Lett. <u>116</u>, 255003 (2016).

Designs were generated for the current phase plates and custom phase plates

The laser–plasma interaction appears to be very classical

Run Y1363

TC14482

- Very high absorption (~99%)
- 50% of the laser energy is deposited by quarter critical
- The overlapped intensity at quarter critical is only 1 \times 10¹⁴ W/cm²
- The standoff distance between quarter critical and the ablation front is large (~350 μ m)

P. W. McKenty et al., CO4.00002, this conference.

At the end of the laser pulse (6.7 ns), the azimuthally averaged center-of-mass radius is very uniform in both cases

Runs Y1002, Y1363 TC14483

The azimuthally averaged deposition patterns exhibit modulations that appear to be smoothed out by thermal conduction

Runs Y1002, Y1363 TC14484

With the current NIF phase plates at 3.5-cm defocus, there are significant azimuthal nonuniformities in the deposited energy

With the custom phase plates, the azimuthal nonuniformities are greatly reduced

UR 🔌

With the current NIF phase plates, variations in the center-of-mass radius are \pm 10- μ m (rms) after 400 μ m of travel

With the custom phase plates, variations in the center-of-mass radius are \pm 4.7- μ m (rms) after 400 μ m of travel

The *m*-mode spectra of center-of-mass variations (summed over ℓ) are dominated by m = 0, 4, and 8

ROCHESTER

TC14489

Runs Y1002, Y1363

The drive uniformity of *Revolver* designs can be improved using custom phase plates

- The implosion velocity uniformity is improved using beam spots that are stretched in the azimuthal direction
 - $-\Delta v/v \sim 2.5\%$ for current phase plates
 - $-\Delta v/v \sim 1.2\%$ for custom phase plates
- The *Revolver* target operates in a regime with nearly 100% inverse-bremsstrahlung absorption

NIF experiments using scaled-down *Revolver* targets would be interesting.

