Revolver Designs for the National Ignition Facility Using Current and Optimized Phase Plates

Current phase plates ($\Delta v/v = 2.5\%$)

- Center-of-mass variations after 400-μm travel

Custom phase plates ($\Delta v/v = 1.2\%$)

- 60th Annual Meeting of the American Physical Society
 Division of Plasma Physics
 Portland, OR
 5–9 November 2018

R. S. Craxton
University of Rochester
Laboratory for Laser Energetics
The drive uniformity of Revolver designs can be improved using custom phase plates

- The implosion velocity uniformity is improved using beam spots that are stretched in the azimuthal direction
 - $\Delta v/v \sim 2.5\%$ for current phase plates
 - $\Delta v/v \sim 1.2\%$ for custom phase plates
- The Revolver target operates in a regime with nearly 100% inverse-bremsstrahlung absorption
Collaborators

Y. Yang,* E. M. Garcia,* and P. W. McKenty
University of Rochester
Laboratory for Laser Energetics
(*LLE Summer High School Research Program)

M. J. Schmitt and K. Molvig
Los Alamos National Laboratory
The *Revolver* design proposed by Molvig *et al.* was used for this work

- Only the interaction of the laser pulse with the Be shell was modeled

Designs were generated for the current phase plates and custom phase plates

Current phase plates (3.5-cm defocus)
- Rings 1 and 2
 \(\theta = 23.5^\circ, 30^\circ \)
 - 1 mm

Custom phase plates (best focus)
- Ring 3
 \(\theta = 44.5^\circ \)
 - 1 mm

- Ring 4
 \(\theta = 50^\circ \)
 - 1 mm

- Current phase plates
 - Rings 1 and 2
 - Ring 3
 - Ring 4
The laser–plasma interaction appears to be very classical

- Very high absorption (~99%)
- 50% of the laser energy is deposited by quarter critical
- The overlapped intensity at quarter critical is only 1×10^{14} W/cm²
- The standoff distance between quarter critical and the ablation front is large (~350 μm)

Rays are not drawn after 50% deposition.

Run Y1363
TC14482

P. W. McKenty et al., CO4.00002, this conference.
At the end of the laser pulse (6.7 ns), the azimuthally averaged center-of-mass radius is very uniform in both cases.

\[\sigma_{\text{rms}} = 2.1 \ \mu m \quad \Delta v/v = 0.54\% \]

\[\sigma_{\text{rms}} = 4.4 \ \mu m \quad \Delta v/v = 1.1\% \]
The azimuthally averaged deposition patterns exhibit modulations that appear to be smoothed out by thermal conduction.
With the current NIF phase plates at 3.5-cm defocus, there are significant azimuthal nonuniformities in the deposited energy.
With the custom phase plates, the azimuthal nonuniformities are greatly reduced.

- Time-integrated deposited energy

Fraction of maximum

Run Y1363
TC14486
With the current NIF phase plates, variations in the center-of-mass radius are \(\pm 10-\mu m \) (rms) after 400 \(\mu m \) of travel.

- Center of mass variations at \(t = 6.7 \) ns
- \(\frac{\Delta v}{v} = 2.5\% \)
With the custom phase plates, variations in the center-of-mass radius are $\pm 4.7\,\mu\text{m (rms)}$ after 400 μm of travel.

- Center of mass variations at $t = 6.7$ ns
- $\frac{\Delta v}{v} = 1.2\%$
The m-mode spectra of center-of-mass variations (summed over ℓ) are dominated by $m = 0, 4,$ and 8
Summary/Conclusions

The drive uniformity of *Revolver* designs can be improved using custom phase plates

- The implosion velocity uniformity is improved using beam spots that are stretched in the azimuthal direction
 - $\Delta v/v \sim 2.5\%$ for current phase plates
 - $\Delta v/v \sim 1.2\%$ for custom phase plates
- The *Revolver* target operates in a regime with nearly 100% inverse-bremsstrahlung absorption

NIF experiments using scaled-down *Revolver* targets would be interesting.