Using the 10 to 20 keV X-Ray Spectrum to Infer an Electron Temperature (T_e) as an Implosion Diagnostic on OMEGA

D. Cao **University of Rochester** Laboratory for Laser Energetics

60th Annual Meeting of the American Physical Society Division of Plasma Physics Portland, OR 5-9 November 2018

Summary

Preliminary hot-spot electron temperatures have been obtained by 10 to 20 keV x-ray measurements on OMEGA direct-drive cryogenic implosions

- The electron temperature is inferred from fitting the log slope of the x-ray spectrum, with choice of photon energy determining spatial weighting
- As a stagnation metric to study hot-spot formation, T_{e} complements the hot-spot ion temperature (T_i) inferred from neutron diagnostics
- Preliminary x-ray measurements show the expected increase of neutron yield with electron temperature, in contrast to measured ion temperatures

A spectral imaging diagnostic is being developed to diagnose the hot-spot T_e on every DT cryogenic implosion.

R. C. Shah, S. P. Regan, C. Sorce, R. Epstein, I. V. Igumenshchev, V. Gopalaswamy, A. R. Christopherson, W. Theobald, P. B. Radha, and V. N. Goncharov

> **University of Rochester** Laboratory for Laser Energetics

Neutron-weighted ion temperatures are biased by hot-spot fluid motions*

• Inferred T_i is obtained from the neutron spectrum, constructed by neutron time-of-flight (nTOF) measurements

• Fluid motion affects neutron time-of-flight and consequently induces T_i variation

There exists a need for diagnosing the hot-spot temperature without bias from hot-spot motion.

*T. J. Murphy, R. E. Chrien, and K. A. Klare, Rev. Sci. Instrum. <u>68</u>, 610 (1997); *C. Forrest et al., BO6.00005, this conference.

The x-ray spectrum offers a robust measure of emission-weighted, inverse temperature (i.e., $\langle 1/kT \rangle$)

ROCHESTER

Using x rays at $h\nu \approx 4 kT_{hs}$ gives an emission weighting that approximates neutron weighting

For OMEGA-scale implosions, T_e and T_i are not in equilibrium during neutron production time

Neutron-weighted temperature versus time

• Despite $T_e \neq T_i$, we are still exploring approaches to link the measured electron temperature to ion temperature

ROCHESTER

Transmission through known filters is being used to measure the electron temperature and absolute x-ray signal

- Mean channel energies range from 10 to 20 keV to have best fit near $hv = 4 kT_{hs}$ (\approx 15 keV)
- Coronal emission contribution is discriminated using imaging
- The filter-inferred electron temperature technique also in use at the National Ignition Facility**

^{*}M. J. Rosenberg et al., "Image-Plate Sensitivity to X Rays at 2 to 60 keV for Spectrometers

on OMEGA and the National Ignition Facility," submitted to Review of Scientific Instruments.

^{**}L. C. Jarrott et al., Rev. Sci. Instrum. 87, 11E534 (2016).

Preliminary x-ray measurements show an increase of neutrons and x-ray yield with electron temperature

The inferred T_e robustly diagnoses hot-spot internal energy compared to min (T_i).

• The absolute signal and inferred T_e will be used to infer ablator mix amounts*

*T. Ma et al., Phys. Rev. Lett. <u>111</u>, 085004 (2013); R. Epstein et al., Phys. Plasmas 22, 022707 (2015).

T_i variation (a signature of hot-spot fluid motion) increases with T_e degradation from 1-D

- Large variations in T_i measurements imply the presence of hot-spot asymmetries (i.e., degradation from 1-D)
 - correlated to yield loss in the experiment*
- As a consistency check, T_i variation should also scale with T_e degradation from 1-D

max T_i

TC14555

*V. Gopalaswamy, TI3.00002, this conference (invited).

Summary/Conclusions

Preliminary hot-spot electron temperatures have been obtained by 10 to 20 keV x-ray measurements on OMEGA direct-drive cryogenic implosions

- The electron temperature is inferred from fitting the log slope of the x-ray spectrum, with choice of photon energy determining spatial weighting
- As a stagnation metric to study hot-spot formation, T_{e} complements the hot-spot ion temperature (T_i) inferred from neutron diagnostics
- Preliminary x-ray measurements show the expected increase of neutron yield with electron temperature, in contrast to measured ion temperatures

A spectral imaging diagnostic is being developed to diagnose the hot-spot T_e on every DT cryogenic implosion.

Backup

Three-dimensional ASTER* simulations show T_e and x-ray yield decrease from 1-D

*I. V. Igumenshchev et al., Phys. Plasmas 23, 052702 (2016).

Data suggest kinetic effects at hv = 10 to 20 keV would be weak, but more analysis would be beneficial

- We assume that 10- to 20-keV photons emit from a Maxwellian electron distribution
- Validity of the Maxwellian approximation is based on the smallness of the Knudsen number $N_{\rm K} = \lambda_{\rm e}/R_{\rm h}$
- For OMEGA cryo implosions during burn, $N_{\rm K}$ was found to be ~0.003* (data support)

TC14550

Continuum," to be published in Contributions to Plasma Physics.

LILAC simulations suggest poor correlation between inferred T_{e} and burn-weighted T_{i} for T_{i} measurement surrogacy

• Each point on the left is a postprocessed LILAC simulation from 1-D CRYO database*

 T_{e} and T_{i} will be independent metrics.

*Created and organized by V. Gopalswamy

In 1-D, there is robust correlation between the slope-inferred electron temperature and the emission averaged electron temperature at $h\nu$ = 15 keV

 Should compare experimentally inferred $\langle T_e \rangle$ to calculated $\langle T_e \rangle$

With the inclusion of a Gaunt Factor, the harmonic mean temperature includes a small correction factor

$$I_{hv} = \int Cn^2 g_{FF} e^{-hv/kT} dV$$

Slope of $\ln(I_{hv}) = \frac{\partial}{\partial(hv)} \ln(I_{hv}) = \frac{1}{I_{hv}} \int Cn^2 g_{FF} e^{-hv/kT} \left(\frac{1}{g_{FF}} \frac{\partial}{\partial(hv)} g_{FF} - \frac{1}{kT}\right)$
Slope of $\ln(I_{hv}) = \left(\frac{1}{2} - \frac{\partial}{\partial g_{FF}} - \frac{1}{2}\right)$

$$\langle g_{FF} \partial(hv) \langle g_{FF} \rangle \langle kT \rangle$$

For ICF hot-spot conditions, $\left\langle \frac{1}{g_{FF}} \frac{\partial}{\partial(hv)} g_{FF} \right\rangle$ can be approximated as $\approx -1/2hv$

Using the asymptotic gaunt factor approximation for inferring T_e introduces little error compared to using a more exact form*

*W. J. Karzas and R. Latter, Astrophys. J. Suppl. Ser. <u>6</u>, 167 (1961).

