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Summary 

 * I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010). 

** J. A. Marozas et al., Phys. Rev. Lett. 120, 085001 (2018).   

Simulations of direct-drive implosions that include target offset require 

a 3-D cross-beam energy transfer ray trace to model ℓ = 1 accurately 

• Implosions that are simulated including the effect of cross-beam energy 

transfer (CBET)* show less sensitivity to initial target offset then when 

modeled without 

• DRACO** simulations with CBET show improved agreement in yield 

compared to experiment  

• Simulated x-ray core offsets match experimental data better when CBET 

effects are included 

CBET reduces the ℓ = 1 mode perturbation induced by target offset 
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No clear correlation exists in OMEGA cryogenic experiments 

between YOC versus target offset for 2.5 ≤ α ≤ 3.5 and 14 ≤ CR ≤ 19 

*W. Grimble, F. J. Marshall, and E. Lambrides, Phys. Plasmas 25, 072702 (2018). 

 

• Other sources of nonuniformity appear to 

dominate YOC in cryogenic implosions 

 

• Simulations, however, have shown neutron 

yields have high sensitivity to target offset 

α : adiabat 

CR: convergence ratio 

XRPHC: x-ray pinhole camera 

YOC: yield over clean 
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Warm target experiments with prescribed target offsets were 

conducted to compare experimental with simulated data 

• Target offsets were nominally 40 μm 

• Simulated both with CBET* + nonlocal heat 

transport and with variable flux limiter 

• Compared data between simulation and 

experiment 

– yields 

– compressed core offsets 

– neutron-averaged core flows** 

* 3-D CBET model: J. A. Marozas et al., Phys. Rev. 

Lett. 120, 085001 (2018). 

**See O. M. Mannion et al., BO6.00010 (next talk). 

Warm targets allow for more control of the target 

positioning, and no ice layer to complicate analysis. 
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Simulations with CBET and nonlocal thermal transport more 

accurately predict yield degradation from target offset 

Values for the variable flux limiter (VFL) were 

chosen to match shock and shell trajectories with 

CBET + nonlocal transport 
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*Experimental yield is normalized to the best-shot, no-offset experiment; 

simulated yield is normalized to the no-offset simulated yield for the same shot. 



  

Simulations with CBET and nonlocal thermal transport more 

accurately predict yield degradation from target offset 
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*Experimental yield is normalized to the best-shot, no-offset experiment; 

simulated yield is normalized to the no-offset simulated yield for the same shot. 

Simulations with CBET and nonlocal thermal transport more 

accurately predict yield degradation from target offset 
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Target offset causes an ℓ = 1 mode in the laser illumination pattern 

• Beam centers strike the 

target closer together on 

one side than the other  

 

• This results in a dominant 

ℓ = 1 mode 
More intense 

Less intense 



  

As the plasma forms, more over-the-horizon 

light reaches the “hot” side of the target 

More over-the-horizon 

light seeds higher CBET 

losses in hot-side beams 

CBET is higher on the hot side of the target, effectively 

mitigating the ℓ = 1 drive asymmetry from target offset. 

ℓ = 1 drive asymmetry from 

power imbalance is not mitigated 

by CBET; this is a geometric 

effect of target offset. 



  

Scattered-light diagnostics in DRACO show CBET 

scatters more light from the hot-side beams  

VFL 

CBET increases the scattered light only on the hot side (north pole).  

CBET 

ϕ = -180º 
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The power deposited by the laser in the ℓ = 1 

mode is dramatically decreased by CBET 

• During the picket and beginning of 

the foot, the mode amplitude is 

similar 

 

• As the plasma scale length 

increases, CBET losses 

dramatically reduce the ℓ = 1 mode 

×0.1 
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The simulated shift of the compressed core away from target 

chamber center agrees better with experiment when CBET is included 

Experimental x-ray core shift 
from TCC ≃ 61±2 μm  

*Spect3D: MacFarlane et al., High Energy 

Density Physics 3, 181 (2007). 

**W. Grimble, F. J. Marshall, and E. Lambrides, 

Phys. Plasmas 25, 072702 (2018). 

 

   TCC: target chamber center 
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Summary/Conclusions 

Simulations of direct-drive implosions that include target offset require 

a 3-D cross-beam energy transfer ray trace to model ℓ = 1 accurately 

• Implosions that are simulated including the effect of cross-beam energy 

transfer show less sensitivity to initial target offset then when modeled 

without 

• DRACO simulations with CBET show improved agreement in yield 

compared to experiment  

• Simulated x-ray core offsets match experimental data better when CBET 

effects are included 

CBET reduces the ℓ = 1 mode perturbation induced by target offset 


