Nonlinear Excitation of the Linearly Stable Ablative Rayleigh–Taylor Instability for All Wave Numbers

H. Zhang University of Rochester Laboratory for Laser Energetics

59th Annual Meeting of the American Physical Society Division of Plasma Physics Milwaukee, WI 23–27 October 2017

Summarv

All of the ablative Rayleigh–Taylor instability (ARTI) modes beyond the linear and the nonlinear cutoff can be destabilized by a finite-amplitude perturbation

- The nonlinear excitation of the single-mode ARTI is investigated by numerical simulations in both 2-D and 3-D
 - in inertial confinement fusion (ICF), the micro-sized finite-amplitude perturbations can be induced by target defects and laser imprinting
 - all linearly stable ablative Rayleigh–Taylor (ART) modes can be nonlinearly destabilized by finite-amplitude perturbation
 - linearly stable ARTI is more easily destabilized in 3-D than in 2-D, and saturates at higher bubble velocity and bubble density
 - small-scale 3-D modes are more efficient at driving mix than 2-D modes in ICF implosions

Collaborators

R. Betti, V. Gopalaswamy, R. Yan, and H. Aluie

University of Rochester Laboratory for Laser Energetics

Finite-amplitude perturbations can nonlinearly destabilize the linearly stable modes

Nonlinear ARTI theory* for low rotational flow ($V_{rot} \ll V_a$): $U_{b}^{ART} = U_{b}^{cl} = \sqrt{g(1-r_d)/C_gk}$ r_d = $ho_1/
ho_h$, C_g = 3 for 2-D, C_q = 1 for 3-D

Nonlinear cutoff:

$$U_{\rm b}^{\rm cl} = \sqrt{g(1-r_d)/C_{\rm g}k_{\rm c}^{\rm nl}} = V_{\rm abl}$$

*V. N. Goncharov, Phys. Rev. Lett. 88, 134502 (2002); J. Sanz et al., Plasma Phys. Control. Fusion 46, B367 (2004).

The small-scale bubble can be accelerated above the classical terminal bubble velocity by ablation-generated vorticity*

A controlled simulation is used to study the nonlinear excitation of a single ARTI mode

- A controlled planar simulation reproduces the typical acceleration phase of a direct-drive target
- The ARTI is seeded by velocity perturbation V_p

 $P_{abl} = 120 \text{ Mbar}$ $g(t = 0) = 100 \ \mu \text{m/ns}^2$ $V_{abl} = 3.5 \ \mu \text{m/ns}^2$

Linearly stable ARTI can be nonlinearly destabilized by a finite-amplitude perturbation

TC13715 ROCHESTER

All modes beyond the linear cutoff can be destabilized for a sufficiently large perturbation

Vorticity dominates the new unstable region $(k > k_c^{nl})$

The destabilization of the ARTI modes beyond k_{c}^{nl} is a result of the enhancement of the bubble velocity above the ablation velocity by large vorticity.

ARTI beyond the linear cutoff is more easily destabilized in 3-D than in 2-D for the same wave number

- The critical amplitude of the 3-D ARTI is smaller than in 2-D
- $V_p \sim 10 V_{abl}$ (or 1.4- μ m surface perturbation) for all modes

A 3-D bubble penetrates into the target much faster than in 2-D

• Consistent with the results for linearly unstable modes*

*R. Yan et al., Phys. Plasmas 23, 022701 (2016).

Small-scale 3-D modes are effective at driving mix in ICF implosions because of higher bubble density

ROCHESTER

Summary/Conclusions

All of the ablative Rayleigh–Taylor instability (ARTI) modes beyond the linear and the nonlinear cutoff can be destabilized by a finite-amplitude perturbation

- The nonlinear excitation of the single-mode ARTI is investigated by numerical simulations in both 2-D and 3-D
 - in inertial confinement fusion (ICF), the micro-sized finite-amplitude perturbations can be induced by target defects and laser imprinting
 - all linearly stable ablative Rayleigh–Taylor (ART) modes can be nonlinearly destabilized by finite-amplitude perturbation
 - linearly stable ARTI is more easily destabilized in 3-D than in 2-D, and saturates at higher bubble velocity and bubble density
 - small-scale 3-D modes are more efficient at driving mix than 2-D modes in ICF implosions

