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We present experimental results on the optical conductivity of  
metallic hydrogen that is consistent with it being a free-electron  
partially ionized plasma  

• Optical reflectance of dense hydrogen was measured as a function of 
energy in the 1.4- to 1.7-Mbar region and up to 2500 K

• The energy dependence of the optical data was analyzed using the Drude 
free-electron model and the Ziman nearly free model*

• The conductivity of the metallic hydrogen is substantially higher than that 
predicted by the strong scattering Mott–Ioffe–Regel model**
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Summary 

  * J. M. Ziman, Philos. Mag. 6, 1013 (1961);
** N. F. Mott, Philos. Mag. 26, 1015 (1972).
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The transport properties of metallic hydrogen are of fundamental importance

• Metallic hydrogen is exceptional
 – no bound electrons 
 – more substantial zero-point motion than any other metal

• Metallic hydrogen is a benchmark system for warm dense matter
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Coulomb coupling parameter:  C= rs/kBT & 1  Strong coupling

Electron-degeneracy parameter:   H = T/TF % 1  High degeneracy
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The transport properties of metallic hydrogen are critical inputs  
for planetary modeling and ignition simulations

• Metallic hydrogen is the most-abundant form of condensed 
matter in our planetary system

 – thermal and dynamo action models depend crucially  
on electronic and thermal properties 

• Inertial confinement fusion (ICF) 
 – the pressure–temperature conditions transversed by 
deuterium–tritium targets are typical of warm dense matter
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Thermal emission and spectrally resolved reflectance were 
measured as a function of temperature
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Pressure was determined from Raman spectroscopy;  
temperature was determined from pyrometry 
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Time-resolved reflectance was measured as a function of 
temperature and wavelength
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M. Zaghoo and I. F. Silvera, “Conductivity and Dissociation in Metallic Hydrogen: Implications for 
Planetary Interiors,” to be published in the Proceedings of the National Academy of Sciences.



E26613

We observe an abrupt rise in reflectance
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The Drude or Ziman transport models were fitted to the data  
to determine the carrier density and collisional frequency

• The dielectric function of metallic hydrogen was determined 
by fitting the measured Fresnel reflectance to two electron 
transport models
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E26614

The data were also fit to quantum statistical  
electron transport models 

• Weak scattering: the electron–ion interaction is a weak perturbation
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• W(q) = –V(q)/f(q) describes the electron–proton pseudopotential, 
which in liquid metallic hydrogen corresponds to the screened 
Coulomb interaction

 – V(q) is the Fourier transform of the Coulomb interaction 
 – f(q) is the dielectric permittivity of the degenerate electron 
gas in the long-wavelength limit 
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* J. M. Ziman, Philos. Mag. 6, 1013 (1961).
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The fit to the weak scattering model reveals 60% ionization, 
consistent with analysis in the Drude model 
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• Partial-ionization in the Ziman 
weak scattering model provides 
great agreement with the data

• The strong scattering Mott–Ioffe–
Regel limit  does not describe 
the magnitude of the observed R

 M. Zaghoo, “Dynamic Conductivity and Partial Ionization in Warm 
Dense Hydrogen,” to be submitted to Physical Review E.
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Summary/Conclusions 

We present experimental results on the optical conductivity of  
metallic hydrogen that is consistent with it being a free-electron  
partially ionized plasma  

• Optical reflectance of dense hydrogen was measured as a function of 
energy in the 1.4- to 1.7-Mbar region and up to 2500 K

• The energy dependence of the optical data was analyzed using the Drude 
free-electron model and the Ziman nearly free model*

• The conductivity of the metallic hydrogen is substantially higher than that 
predicted by the strong scattering Mott–Ioffe–Regel model**

  * J. M. Ziman, Philos. Mag. 6, 1013 (1961);
** N. F. Mott, Philos. Mag. 26, 1015 (1972).


