Dynamic Conductivity and Partial Ionization in Metallic Hydrogen

M. Zaghoo **Harvard University University of Rochester** Laboratory for Laser Energetics

59th Annual Meeting of the **American Physical Society Division of Plasma Physics** Milwaukee, WI 23-27 October 2017

Summary

We present experimental results on the optical conductivity of metallic hydrogen that is consistent with it being a free-electron partially ionized plasma

- Optical reflectance of dense hydrogen was measured as a function of energy in the 1.4- to 1.7-Mbar region and up to 2500 K
- The energy dependence of the optical data was analyzed using the Drude free-electron model and the Ziman nearly free model*
- The conductivity of the metallic hydrogen is substantially higher than that predicted by the strong scattering Mott–Ioffe–Regel model**

E26620

*J. M. Ziman, Philos. Mag. 6, 1013 (1961); **N. F. Mott, Philos. Mag. 26, 1015 (1972).

Collaborators

I. F. Silvera Harvard University

The transport properties of metallic hydrogen are of fundamental importance

- Metallic hydrogen is exceptional
 - no bound electrons
 - more substantial zero-point motion than any other metal
- Metallic hydrogen is a benchmark system for warm dense matter

Coulomb coupling parameter:	$\Gamma = r_{\rm s}/k_{\rm B}T \gg 1$	Strong coupling
Electron-degeneracy parameter:	$\Theta = T/T_{F} \ll 1$	High degenerad

The transport properties of metallic hydrogen are critical inputs for planetary modeling and ignition simulations

- Metallic hydrogen is the most-abundant form of condensed matter in our planetary system
 - thermal and dynamo action models depend crucially on electronic and thermal properties
- Inertial confinement fusion (ICF)
 - the pressure-temperature conditions transversed by deuterium-tritium targets are typical of warm dense matter

Thermal emission and spectrally resolved reflectance were measured as a function of temperature

Pressure was determined from Raman spectroscopy; temperature was determined from pyrometry

Time-resolved reflectance was measured as a function of temperature and wavelength

M. Zaghoo and I. F. Silvera, "Conductivity and Dissociation in Metallic Hydrogen: Implications for Planetary Interiors," to be published in the Proceedings of the National Academy of Sciences.

We observe an abrupt rise in reflectance

M. Zaghoo and I. F. Silvera, "Conductivity and Dissociation in Metallic Hydrogen: Implications for Planetary Interiors," to be published in the Proceedings of the National Academy of Sciences.

The Drude or Ziman transport models were fitted to the data to determine the carrier density and collisional frequency

• The dielectric function of metallic hydrogen was determined by fitting the measured Fresnel reflectance to two electron transport models

$$R(\omega) = \left| \frac{\sqrt{\varepsilon(\omega)}_{MH} - ND}{\sqrt{\varepsilon(\omega)}_{MH} + ND} \right|^{2}$$
$$\varepsilon(\omega) = 1 + \frac{i}{\omega\varepsilon_{0}}\sigma(\omega) = 1 - \frac{\omega_{p}^{2}}{\omega[\omega + i\nu(\omega)]}$$

E26612

ND: index of refraction of diamond

Fitting the Drude free-electron model to the energy dependence of the reflectance data reveals a partial ionization of 67%

The data were also fit to quantum statistical electron transport models

• Weak scattering: the electron-ion interaction is a weak perturbation

$$\mathcal{V}_{dc-degenerate}^{Ziman} = \frac{n_{p}m_{e}}{4\pi\hbar^{3}\kappa_{F}^{3}} \int_{0}^{1} dy \ y^{3} W^{2}(y) \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} S^{p}(y,\omega) \frac{\beta\hbar\omega}{e^{\beta\hbar\omega}-1}$$

- $W(q) = -V(q)/\varepsilon(q)$ describes the electron-proton pseudopotential, which in liquid metallic hydrogen corresponds to the screened **Coulomb** interaction
 - -V(q) is the Fourier transform of the Coulomb interaction
 - $-\varepsilon(q)$ is the dielectric permittivity of the degenerate electron gas in the long-wavelength limit

E26614

*J. M. Ziman, Philos. Mag. <u>6</u>, 1013 (1961).

The fit to the weak scattering model reveals 60% ionization, consistent with analysis in the Drude model

- Partial-ionization in the Ziman weak scattering model provides great agreement with the data
- The strong scattering Mott–loffe– Regel limit does not describe the magnitude of the observed *R*

M. Zaghoo, "Dynamic Conductivity and Partial Ionization in Warm Dense Hydrogen," to be submitted to Physical Review E.

Summary/Conclusions

We present experimental results on the optical conductivity of metallic hydrogen that is consistent with it being a free-electron partially ionized plasma

- Optical reflectance of dense hydrogen was measured as a function of energy in the 1.4- to 1.7-Mbar region and up to 2500 K
- The energy dependence of the optical data was analyzed using the Drude free-electron model and the Ziman nearly free model*
- The conductivity of the metallic hydrogen is substantially higher than that predicted by the strong scattering Mott–Ioffe–Regel model**

E26620

*J. M. Ziman, Philos. Mag. 6, 1013 (1961); **N. F. Mott, Philos. Mag. 26, 1015 (1972).