Three-Dimensional Studies of the Effect of Residual Kinetic Energy on Yield Degradation

University of Rochester Laboratory for Laser Energetics

59th Annual Meeting of the American Physical Society Division of Plasma Physics Milwaukee, WI 23–27 October 2017

Summarv

A hot-spot model indicates that the yield degradation caused by low- and mid-mode nonuniformities is a strong function of the residual kinetic energy

- A synthetic single-mode database ranging from low mode ($\ell = 1$) to mid mode ($\ell = 12$) was built using the 3-D hydrocode *DEC3D** applied to the deceleration phase of inertial confinement fusion (ICF) implosions
- It is shown that the yield-over-clean (YOC) is strongly correlated to residual kinetic energy (RKE) at bang time
- The simulation results are also confirmed by a simple analytical hot-spot model

Collaborators

R. Betti, A Bose, D. Patel, and V. Gopalaswamy

University of Rochester Laboratory for Laser Energetics

A synthetic single-mode database was built using DEC3D to study yield degradation caused by Rayleigh–Taylor instabilities (RTI) in the deceleration phase

ROCHESTER

TC13779

single-mode $\ell = 12, m = 6$ at stagnation

The synthetic database includes 3-D simulations using different velocity perturbations with spherical-harmonic single modes from $\ell = 1$ to $\ell = 12$

1-keV T_e contour surface at stagnation

- HYPRE thermal diffusion
- Resolution = $128 \times 128 \times 256$ ($r \times \theta \times \phi$ zones)

TC13780

*PPM: piecewise parabolic method

A simple 3-D hot-spot model is derived using energy conservation and an adiabatic condition, and neglecting the heat flux flowing into the cold bubbles

Neutron yield: $Y \simeq n^2 \langle \sigma \nu \rangle V \tau$

Yield-over-clean: YO

$$\mathbf{P}\mathbf{C} \simeq \left[rac{\mathbf{n}_{3-\mathrm{D}}}{\mathbf{n}_{1-\mathrm{D}}}
ight]^2 \left[rac{\mathbf{T}_{3-\mathrm{D}}}{\mathbf{T}_{1-\mathrm{D}}}
ight]^4 \left[rac{\mathbf{V}_{3-\mathrm{D}}}{\mathbf{V}_{1-\mathrm{D}}}
ight] \left[rac{\mathbf{\tau}_{3-\mathrm{D}}}{\mathbf{\tau}_{1-\mathrm{D}}}
ight]$$

Adiabatic implosion:

$$P_{3-D} V_{3-D}^{5/3} = P_{1-D} V_{1-D}^{5/3}$$

$$\longrightarrow \frac{P_{3-D}}{P_{1-D}} = \left(\frac{IE_{3-D}}{IE_{1-D}}\right)^{5/2} \text{ and } \frac{V_{3-D}}{V_{1-D}} = \left(\frac{IE_{3}}{IE_{1}}\right)^{5/2}$$

Energy conservation: $IE_{HS}^{stag} = KE_{tot}^{max} - KE_{tot}^{stag} - IE_{SH}^{stag}$

Energy conservation and adiabatic condition are used to derive the YOC dependence in the residual kinetic energy

For low modes, a 1-D scaling of the mass ablation rate is used to derive the 3-D hot-spot mass

One-dimensional approximations for mass ablation rate* and hot-spot surface area

$$\frac{M_{\rm HS}}{\tau} \simeq \dot{m}_{\rm abl} S_{\rm HS} \sim T_{\rm HS}^{5/2} R \sim \left(P_{\rm HS} V_{\rm HS} / M_{\rm HS}\right)^{5/2} V_{\rm HS}^{1/3}$$
$$T_{\rm HS}^{5/2} / R$$

Scaling for 3-D hot-spot mass

 $\hat{M}_{\rm HS} = \hat{P}_{\rm HS}^{5/7} \hat{V}_{\rm HS}^{17/21} \hat{\tau}_{\rm BW}^{2/7} = (1 - \text{RKE})^{4/7} \hat{\tau}_{\rm BW}^{2/7}$

The YOC is a strong function of the residual kinetic energy

*A. L. Kritcher, et al., Phys. Plasma, 21, 042708 (2014).

The RKE model provides a reasonable approximation for the YOC for low to mid modes and provides an upper bound for the YOC for mid modes

The results are consistent with 2-D HYDRA simulations by Kritcher et al.*

*A. L. Kritcher, et al., Phys. Plasma, <u>21</u>, 042708 (2014).

Summary/Conclusions

A hot-spot model indicates that the yield degradation caused by low- and mid-mode nonuniformities is a strong function of the residual kinetic energy

- A synthetic single-mode database ranging from low mode ($\ell = 1$) to mid mode ($\ell = 12$) was built using the 3-D hydrocode *DEC3D** applied to the deceleration phase of inertial confinement fusion (ICF) implosions
- It is shown that the yield-over-clean (YOC) is strongly correlated to residual kinetic energy (RKE) at bang time
- The simulation results are also confirmed by a simple analytical hot-spot model

