Picosecond Time-Resolved Temperature and Density Measurements with K-Shell Spectroscopy

C. R. Stillman
University of Rochester
Laboratory for Laser Energetics

Laser: 10 J, <1 ps
Intensity: >10^{18} W/cm^2

0.2-μm buried Al layer

Plastic tamper

Electron temperature (eV)

- 10 J; Al surface layer
- 10 J; 1 μm CH

Time (ps)

0 5 10 15 20 25 30

0 100 200 300 400 500

59th Annual Meeting of the American Physical Society
Division of Plasma Physics
Milwaukee, WI
23–27 October 2017
Bulk plasma conditions were inferred from picosecond time-resolved measurements of the Heα thermal line from a buried Al tracer layer

- High-intensity, short-pulse laser interactions have been used to produce dense, high-temperature plasmas
- Picosecond streaked x-ray spectroscopy measured Heα thermal line emission from a CH foil containing a buried Al tracer layer
- The plasma conditions were inferred from the thermal linewidth and satellite intensity ratio using a nonlocal thermodynamic equilibrium (NLTE) collisional-radiative atomic physics model*

Summary

Experimental uncertainties in the inferred plasma conditions are quantified in a self-consistent model-dependent framework.

J. J. MacFarlane et al., High Energy Density Phys. 3, 181 (2007).
Collaborators

P. M. Nilson, S. T. Ivancic, C. Mileham, and D. H. Froula

University of Rochester
Laboratory for Laser Energetics

I. E. Golovkin
Prism Computational Sciences
High-energy-density radiative and material properties studies require homogeneous, well-characterized plasmas

- The plasma conditions in dense, high-temperature plasmas are typically inferred with ultrafast thermal x-ray spectroscopy
- Previous work has demonstrated how the plasma conditions can be inferred by χ^2 fitting or from line ratios and widths;* rigorous evaluation of experimental and statistical uncertainties is uncommon
- Statistical uncertainties must be evaluated and quantified in a self-consistent, model-dependent framework

Experiments using buried-layer targets access the dense, high-temperature plasma regime

- The target is plastic and contains a buried Al spectroscopic tracer layer

- The buried layer heats through collisional dissipation of a resistive return current

- Buried-layer emission is studied with an ultrafast streaked x-ray spectrometer

The data are compared to simulated spectra to infer the plasma conditions.

** D. J. Hoarty et al., High Energy Density Phys. 9, 661 (2013).
A focusing, time-resolved Hall spectrometer measured He_α emission from a buried Al layer

- Conically curved focusing potassium acid phthalate (KAP) crystal
- Spectral range ± 90 eV around Al He_α
- Spectral resolution $E/\Delta E \sim 1000$
- Temporal resolution ~ 2 ps

The measured spectra are averaged over the streak-camera temporal impulse response
Statistical uncertainties are quantified from detector photométrics and gain

- Uncertainty* in the He$_\alpha$ satellite intensity ratio is calculated from statistical uncertainties in the measured signal and background.
- Uncertainty in the He$_\alpha$ FWHM** is based on the likelihood that statistical signal fluctuations could be spuriously detected as FWHM crossing points.

**FWHM: full width at half maximum.
The instantaneous temperature and density were inferred by comparison to a NLTE collisional-radiative atomic physics model.

The calculation considers satellite production from Al IX to XIV ions with Doppler, Stark, natural, Auger, and opacity broadening contributions.

J. J. MacFarlane et al., High Energy Density Phys. 3, 181 (2007).
Preliminary analysis shows the time-dependent plasma conditions for Al layers driven by a 10-J, 0.7-ps laser pulse.

K-shell atomic model dependence introduces an additional uncertainty of ~5% in T_e and ~30% in n_e.

T. Nagayama et al., High Energy Density Phys. 20, 17 (2016).
The bulk plasma conditions were inferred using picosecond time-resolved measurements of the Al He$_\alpha$ thermal line from a buried tracer layer.

- High-intensity, short-pulse laser interactions have been used to produce dense, high-temperature plasmas
- Picosecond x-ray spectroscopy was used to measure the thermal line emission from a buried aluminum tracer layer
- The plasma conditions were inferred from the thermal linewidth and satellite intensity ratio using a NLTE collisional-radiative atomic physics model*

Experimental uncertainties in the inferred plasma conditions are quantified in a self-consistent model-dependent framework.