Laser–Plasma Interaction Experiments at Direct-Drive **Ignition-Relevant Plasma Conditions at the National Ignition Facility**

Shot N160420-003 optical spectrometer

A. A. Solodov **University of Rochester** Laboratory for Laser Energetics

59th Annual Meeting of the **American Physical Society Division of Plasma Physics** Milwaukee, WI 23-27 October 2017

Summary

Planar NIF* experiments demonstrate origins and scaling of hot-electron preheat at NIF coronal conditions

- NIF planar-target experiments achieve direct-drive (DD) ignition-relevant scale lengths ($L_n \sim 400$ to 700 μ m) and electron temperatures ($T_e \sim 4$ to 5 keV)
- Stimulated Raman scattering (SRS) is found to be the dominant laser-plasma interaction (LPI) instability at these conditions
- Hot-electron preheat is tolerable in DD ignition designs with CH ablators if $I_{n_{\rm C}/4} < 4.5 \times 10^{14} \, {\rm W/cm^2}$
- The use of Si ablators increases the allowable intensities to $I_{n_c/4} < 6.5 \times 10^{14} \text{ W/cm}^2$

TC13890

*NIF: National Ignition Facility

Collaborators

M. J. Rosenberg, J. F. Myatt, W. Seka, R. Epstein, R. W. Short, S. P. Regan, D. H. Froula, P. B. Radha, and V. N. Goncharov

University of Rochester Laboratory for Laser Energetics

J.W. Bates and A. J. Schmitt

Naval Research Laboratory

P. Michel, M. Hohenberger, T. Chapman, and J. D. Moody

Lawrence Livermore National Laboratory

Motivation

Hot-electron preheat can degrade fuel compression in DD ignition designs

- The ignition target performance is negatively affected if more than ~0.15% of the laser energy is coupled into the cold fuel in the form of hot electrons*
- If electron divergence is large, only ~25% of the hot electrons will intersect the cold fuel and result in preheat**
- Electrons with energy below ~50 keV will be stopped in the ablator and will not preheat the compressed fuel

Hot-electron preheat mitigation is needed if more than ~0.7% of the laser energy is converted to hot electrons at $T_{hot} \sim 50$ to 60 keV.

^{*}J. A. Delettrez, T. J. B. Collins, and C. Ye, Bull. Am. Phys. Soc. 59, 150 (2014). ** B. Yaakobi et al., Phys. Plasmas 20, 092706 (2013). Hot-electron divergence on the NIF will be investigated.

Planar NIF experiments explore LPI instabilities and hot-electron production in DD ignition-relevant plasma conditions

Coronal conditions predicted by DRACO radiation-hydrodynamic simulations

Parameters at n _c /4 surface	Ignition NIF DD*	Planar NIF
<i>I</i> _L (W/cm ²)	6 to 8×10^{14}	5 to 15×10^{14}
L_{n} (μ m)	600	500 to 700
T _e (keV)	3.5 to 5	3 to 5

• Incident laser intensity is ~2× intensity at $n_c/4$ at ignition-relevant L_n and T_e

TC12382e

*V. N. Goncharov et al., Bull. Am. Phys. Soc. <u>61</u>, BAPS.2016.DPP.TO5.3 (2016).

Hot-electron production in CH targets and mitigation by the use of Si ablator was explored

Hard x rays

(FFLEX)

Optical spectroscopy \rightarrow signature of SRS and two-plasmon decay (TPD)

Optical spectra demonstrate different LPI physics on the NIF than on OMEGA, including the dominance of SRS*

*M. J. Rosenberg et al., "Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments," submitted to Physical Review Letters. **W. Seka et al., Phys. Plasmas 16, 052701 (2009).

log₁₀ 3.0 2.5

Absolute SRS (>702 nm) scales linearly with incident laser power while sub- $n_c/4$ SRS scales exponentially

- Absolute SRS accounts for ~30% of total SRS light
- Total SRS appears to reach ~5% of incident (~10% of light reaching interaction region)

E26297a

The experiments determine the laser-intensity limit for DD ignition designs

designs with CH ablators if $I_{n_c/4} < 4.5 \times 10^{14} \text{ W/cm}^2$; with Si ablators if $I_{n_c/4} < 6.5 \times 10^{14} \, \text{W/cm}^2$

TC13432a

Summary/Conclusions

Planar NIF* experiments demonstrate origins and scaling of hot-electron preheat at NIF coronal conditions

- NIF planar-target experiments achieve direct-drive (DD) ignition-relevant scale lengths ($L_n \sim 400$ to 700 μ m) and electron temperatures ($T_e \sim 4$ to 5 keV)
- Stimulated Raman scattering (SRS) is found to be the dominant laser–plasma interaction (LPI) instability at these conditions
- Hot-electron preheat is tolerable in DD ignition designs with CH ablators if $I_{n_c/4} < 4.5 \times 10^{14} \,\text{W/cm}^2$
- The use of Si ablators increases the allowable intensities to $I_{n_c/4} < 6.5 \times 10^{14} \text{ W/cm}^2$

TC13890

*NIF: National Ignition Facility

Hot-electron properties were inferred using the measured hard x-ray spectra

Time-integrated hard x-ray spectra obtained using FFLEX*

• Monte Carlo EGSnrc** simulations were used to relate the energy of hard x rays and hot electrons

Canada, NRCC Report PIRS-701 (May 2011).

*M. Hohenberger et al., Rev. Sci. Instrum. 85, 11D501 (2014). **I. Kawrakow et al., National Research Council Canada, Ottawa,

TC13429a

