Three-Dimensional Simulations of Flat-Foil Laser-Imprint Experiments at the National Ignition Facility

Summarv

NIF* experiments were performed to measure imprint-seeded nonuniformities in planar foils driven with and without 45-GHz SSD applied to the laser pulse

- Excellent high-resolution x-ray radiography data with a clearly visible imprint signature were obtained
- Three-dimensional HYDRA simulations were used to capture 3-D physics of 1-D smoothing by spectral dispersion (SSD) and resolve all single-beam imprint modes
- Simulations predict a higher level of imprint, faster Rayleigh–Taylor (RT) growth rate, and early saturation time relative to experiments
- X-ray preheat from the backlighter is hypothesized to cause target preheat and reduce imprint

*NIF: National Ignition Facility

Collaborators

P. B. Radha, M. J. Rosenberg, K. S. Anderson, V. N. Goncharov, J. A. Marozas, F. J. Marshall, P. W. McKenty, S. P. Regan, and T. C. Sangster

> University of Rochester Laboratory for Laser Energetics

M. Hohenberger, J. M. Di Nicola, J. M. Koning, M. M. Marinak, and L. Masse

Lawrence Livermore National Laboratory

M. Karasik

Naval Research Laboratory

Single-beam smoothing is required for high-performance direct-drive implosions on the NIF

Calculated time-integrated inner-cone (23.5°) beam intensity No SSD NIF standard 45-GHz SSD Multi-FM SSD 0.23 1 y (mm) $\sigma_{\rm rms}$ = 0.25 $\sigma_{\rm rms}$ = 0.11 $-1 \mid \sigma_{\rm rms} = 1$ 0 0 0 0 **x** (**mm**) **x** (mm) **x** (mm)

> One-dimensional multi-FM SSD* (multifrequency modulation smoothing by spectral dispersion) has been validated** on a single quad (Q24B) of the NIF

> > *J. A. Marozas, J. D. Zuegel, and T. J. B. Collins, Bull. Am. Phys. Soc. <u>55</u>, 294 (2010). **A. Shvydky et al., Bull. Am. Phys. Soc. 61, BAPS.2016.DPP.JO5.3 (2016).

TC13897

NIF planar experiments used single-beam drive with no SSD and the NIF standard 45-GHz SSD

ROCHESTER

TC13898

Excellent data were obtained with a clearly visible imprint signature

TC13899

Each frame is an overlap of four camera frames

The 3-D code HYDRA* is used to simulate the impact of SSD

Simulations use HYDRA's spherical laser-deposition model and resolve speckle size (~6 μ m) \bullet

ROCHESTER

TC12566b

*M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001).

Simulations reproduce similar features as seen in the experimental radiographs but with much higher optical depth

15- μ m pinhole and framing-camera blurring were applied to simulated images

TC13900

SSD active direction

Simulations predict a higher lever of imprint, faster Rayleigh–Taylor growth rate, and early saturation time compared to experiments

*rms: root mean square

X-ray preheat is hypothesized to be the cause of the lower than predicted level of imprint observed in experiments

The experiments are being considered to be repeated using a delayed backlighter pulse.

Summary/Conclusions

NIF* experiments were performed to measure imprint-seeded nonuniformities in planar foils driven with and without 45-GHz SSD applied to the laser pulse

- Excellent high-resolution x-ray radiography data with a clearly visible imprint signature were obtained
- Three-dimensional HYDRA simulations were used to capture 3-D physics of 1-D smoothing by spectral dispersion (SSD) and resolve all single-beam imprint modes
- Simulations predict a higher level of imprint, faster Rayleigh–Taylor (RT) growth rate, and early saturation time relative to experiments
- X-ray preheat from the backlighter is hypothesized to cause target preheat and reduce imprint

TC13896

*NIF: National Ignition Facility