
The Effect of Laser Imprint on OMEGA Cryogenic Implosions

DRACO simulation of OMEGA α = 3.7 (shot 77066) at peak neutron production

P. B. Radha **University of Rochester** Laboratory for Laser Energetics

59th Annual Meeting of the **American Physical Society Division of Plasma Physics** Milwaukee, WI 23-27 October 2017

Summary

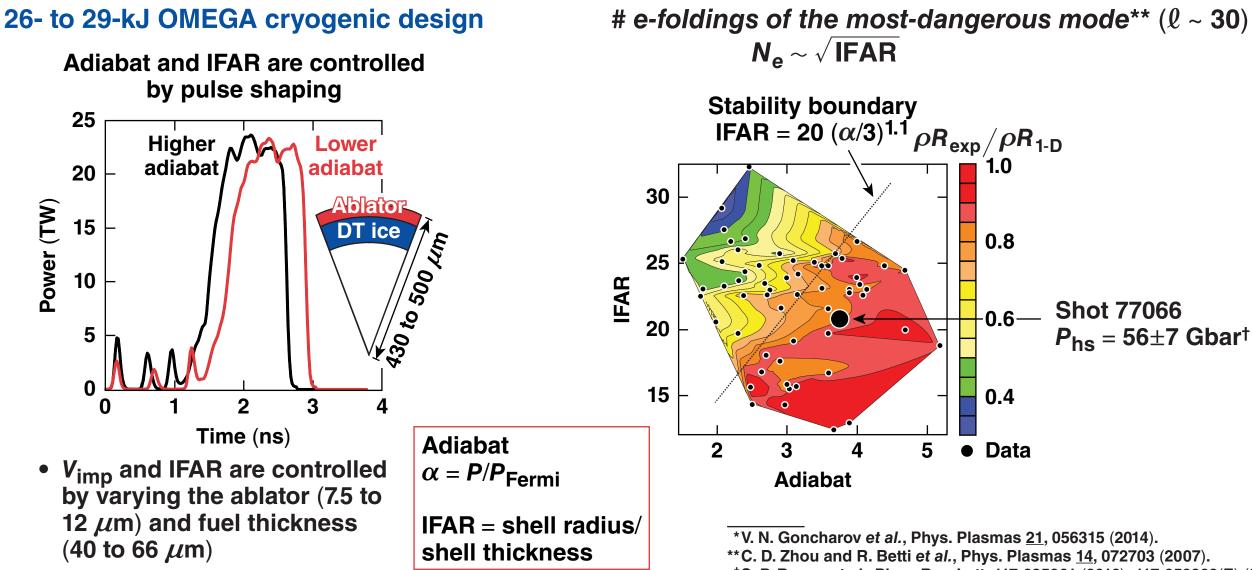
DRACO simulations indicate that an OMEGA cryogenic implosion at an intermediate adiabat ~4 is only marginally affected by laser imprint

- Areal density degrades in OMEGA cryogenic implosions with increasing in-flight aspect ratio (IFAR); it is hypothesized that this is a result of laser imprint and subsequent Rayleigh–Taylor (RT) growth
- DRACO simulations include full 3-D ray trace with cross-beam energy transfer (CBET) and nonlocal transport
- Ongoing work is systematically studying designs with varying in-flight stability through changes in imprint (smoothing on/off) and RT growth (varying adiabat and IFAR)

2

R. Betti, E. M. Campbell, D. Cao, T. J. B. Collins, C. J. Forrest, V. Yu Glebov, V. N. Goncharov, S. X. Hu, J. P. Knauer, J. A. Marozas, F. J. Marshall, S. P. Regan, T. C. Sangster, A. Shvydky, and C. Stoeckl

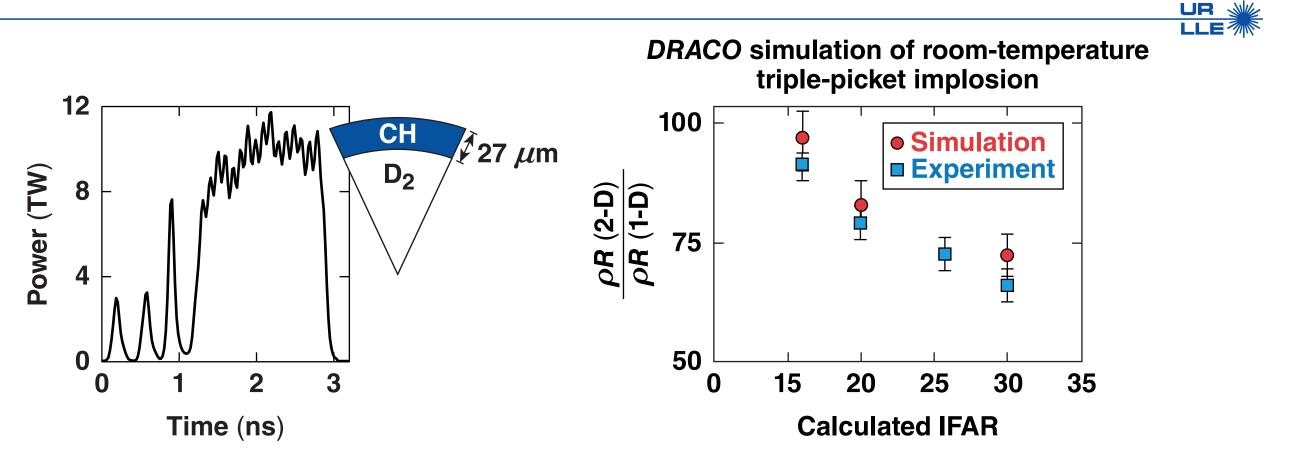
> University of Rochester Laboratory for Laser Energetics


M. Gatu Johnson, J. A. Frenje, and R. D. Petrasso

Massachusetts Institute of Technology Plasma Science and Fusion Center

Areal density is compromised with increasing IFAR relative to spherically symmetric simulations in OMEGA cryogenic experiments*

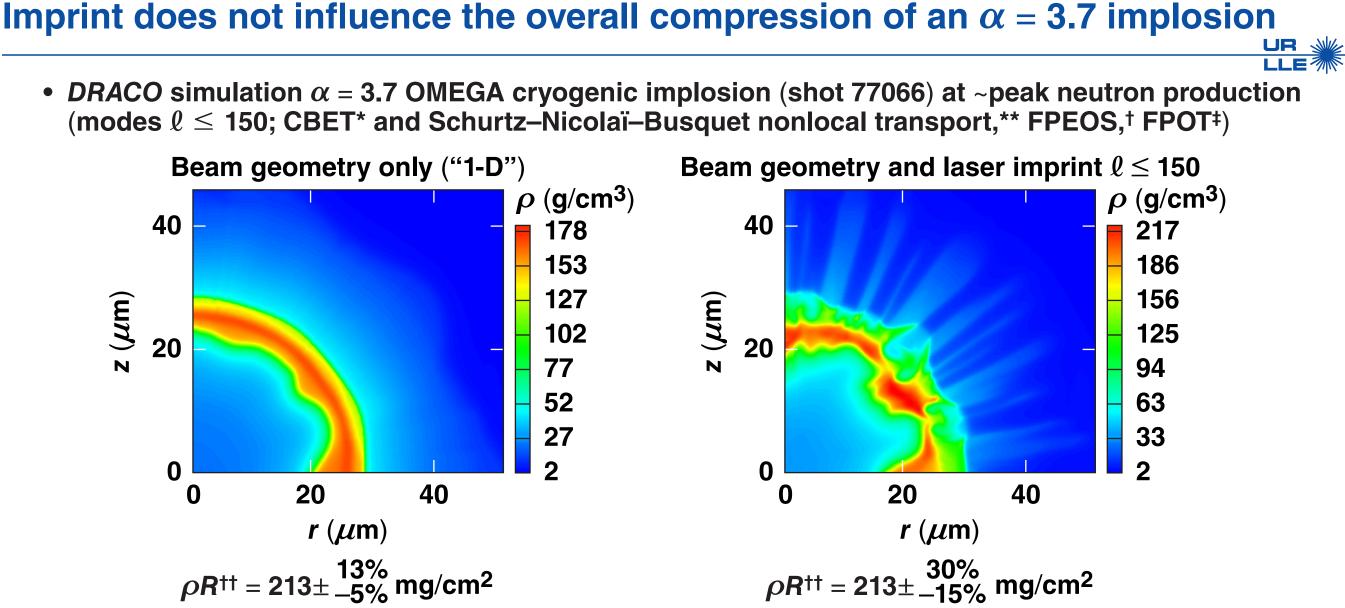
TC13931



Shot 77066 $P_{\rm hs} = 56 \pm 7 \; \rm Gbar^{\dagger}$

⁺S. P. Regan et al., Phys. Rev. Lett. 117, 025001 (2016); 117, 059903(E) (2016).

Imprint has been shown to compromise areal density in room-temperature implosions on OMEGA*



- IFAR is changed by changing picket energies
 - other measures of shell stability (shell thickness) have been studied previously in room-temperature implosions**
 - the role of laser imprint on OMEGA cryogenic implosions is being studied with DRACO

TC13932

*P. B. Radha et al., Phys. Plasmas <u>18</u>, 012705 (2011). **S. X. Hu et al., Phys. Plasmas <u>23</u>, 102701 (2016).

*J. A. Marozas and T. J. B. Collins, UO5.00003, presented at the 54th Annual Meeting of the Division of Plasma Physics, Providence, RI, 29 October-2 November 2102.

**D. Cao, G. Moses, and J. Delettrez, Phys. Plasmas 22, 082308 (2015).

[†]FPEOS: first-principles equation of state; S. X. Hu et al., Phys. Rev. E 92, 043104 (2015).

TC13933

[‡]FPOT: first-principles opacity table; S. X. Hu *et al.*, Phys. Rev. E 90, 033111 (2014). ⁺⁺IRIS2D; P. B. Radha et al., KO2 8, presented at the 41st Annual Meeting of the Division of Plasma Physics, Seattle, WA, 15–19 November 1999.

Observables are only marginally influenced by imprint for this design

	Imprint/"1-D" (%)	Experiment/"1-D" (%)	
Yield	80	38 ±2	
$\langle ho {m R} angle_{m n}$ **	97	90 ±8	
Ti	94	90 ±7	
$R_{ m hs}~(\mu{ m m})^{ m t}$	100	96±2	
P _{hs} (Gbar)	96	62 ±8	

- The modal approximation of imprint used in DRACO will be compared with the speckle model[‡]
- Simulations spanning the parameter space of IFAR and adiabat will continue to identify trends and the effect of imprint on observables

TC13934

Yield comprised by $\ell \leq 10$ seeded by power imbalance*

^{*}I. V. Igumenshchev et al., Phys. Plasmas 24, 056307 (2017). **IRIS2D; P. B. Radha et al., KO2 8, presented at the 41st Annual Meeting of the Division of Plasma Physics, Seattle, WA, 15–19 November 1999. [†]Spect3D; J. J. MacFarlane et al., High Energy Density Phys. <u>3</u>, 181 (2007). [‡]A. Shvydky, JO7.00001, this conference.

Summary/Conclusions

DRACO simulations indicate that an OMEGA cryogenic implosion at an intermediate adiabat ~4 is only marginally affected by laser imprint

- Areal density degrades in OMEGA cryogenic implosions with increasing in-flight aspect ratio (IFAR); it is hypothesized that this is a result of laser imprint and subsequent Rayleigh–Taylor (RT) growth
- DRACO simulations include full 3-D ray trace with cross-beam energy transfer (CBET) and nonlocal transport
- Ongoing work is systematically studying designs with varying in-flight stability through changes in imprint (smoothing on/off) and RT growth (varying adiabat and IFAR)

