Signatures of an Intermediate-Mode Asymmetry in OMEGA Implosions

D. Patel **University of Rochester** Laboratory for Laser Energetics

Max

59th Annual Meeting of the American Physical Society Division of Plasma Physics Milwaukee, WI 23-27 October 2017

Summary

An intermediate mode coming from the OMEGA 60 beam-port geometry may explain the asymmetry observed in self-emission images of cryogenic implosions

- Framing-camera images taken during the acceleration phase of Ge-doped targets suggest an intermediate mode seeded by the OMEGA 60 beam-port geometry
- Simulations of the deceleration phase of a cryogenic implosion with this intermediate mode were performed using the 3-D hydrocode DEC3D* and post-processed with Spect3D** to construct self-emission images
- Spect3D synthetic self-emission images exhibit similar shapes for the hot spot as observed in time-integrated, self-emission images of cryo implosions

TC13819

Collaborators

R. Betti, K. M. Woo, D. T. Michel, R. C. Shah, F. J. Marshall, V. Gopalaswamy, A. Bose, D. Cao, J. P. Knauer, C. Stoeckl, and S. P. Regan

> **University of Rochester** Laboratory for Laser Energetics

Regions of lower emission were observed in time-resolved, acceleration-phase self-emission images of Ge-doped cryogenic implosions

Dark spots are regions ablating DT, while surrounding regions are still-ablating Ge-CH, suggesting we have higher laser illumination at these dark spots.

TC13820

features more visible

D. T. Michel, Principal Investigator

The regions of lower emission observed in Ge-doped cryo implosions bear a close resemblance to OMEGA 60 beam-port geometry

The level of contrast in the image is not indicative of the magnitude of variation in laser illumination

Comparison with OMEGA 60 beam-port geometry suggests that we have higher illumination at the location of beam centers and at the centers of hexagons and pentagons.

Images from other Ge-doped implosions show that this is not an isolated occurrence

Shot 85423

Shot 85421

Shot 85414

Shot 83319

The same pattern appears in Ge-doped implosions performed months apart, removing power balance or target offsets as probable causes. This, in addition to its close resemblance to beam-pointing shot images, suggests that OMEGA's beam-port geometry is the most-probable cause.

Shot 83321

Successive processed images for shot 85421 show that the nonuniformity pattern persists late into the acceleration phase

TC13937 KOCHESTER

Separate imagers provide x-ray self-emission images of acceleration and stagnation phases of OMEGA cryogenic implosions

We are trying to relate asymmetries observed in early-time images to asymmetries observed in images of stagnated cores.

*KB: Kirkpatrick–Baez

• In the absence of a theory that could explain the observed nonuniformity pattern,* simulations were performed using a mode that approximately mimics the pattern while keeping the perturbation level at an arbitrarily chosen variable; we are searching for better ways to accurately represent the mode

TC13822

*Conversations with multiple LLE plasma physicists.

Simulated self-emission images from Spect3D of a typical cryo implosion perturbed with the OMEGA port-geometry pattern exhibit a hexagonal shape

Simulated self-emission image

3-D density contour

at 30% of ho_{\max}

Hydrodynamic profiles at stagnation

TC13824

3-D temperature contour at 30% T_{imax}

*GMXI: gated monochromatic x-ray imager

Integrated x-ray self-emission images of cryo implosions observed with the GMXI* often show a mid-mode asymmetry in the shape of the hot spot, similar to simulations

Max Min

*F. J. Marshall and J. A. Oertel, Rev. Sci. Instrum. 68, 735 (1997).

A future direction is to use time-resolved self-emission images of the disassembly phase gated for lower photon energies to enhance these signatures

Simulated timeresolved image of self-emission at 2 keV

As low-energy photons are absorbed by shell ρR , the emission pattern at lower energies carries the information of ρR modulation of the shell caused by Rayleigh–Taylor modes

TC13826

Summary/Conclusions

An intermediate mode coming from the OMEGA 60 beam-port geometry may explain the asymmetry observed in self-emission images of cryogenic implosions

- Framing-camera images taken during the acceleration phase of Ge-doped targets suggest an intermediate mode seeded by the OMEGA 60 beam-port geometry
- Simulations of the deceleration phase of a cryogenic implosion with this intermediate mode were performed using the 3-D hydrocode DEC3D* and post-processed with Spect3D** to construct self-emission images
- Spect3D synthetic self-emission images exhibit similar shapes for the hot spot as observed in time-integrated, self-emission images of cryo implosions

TC13819a

A feature-detection algorithm is used to enhance weak features in raw images

Heavy median filter followed by a Gaussian filter removing all details ("heavy data")

Processed images from the same Ge-doped implosion 85423

