Effects of Hot-Spot Geometry on Backscattering and Down-Scattering Neutron Spectra

Milwaukee, WI 23-27 October 2017

Spectra from MCNP and IRIS3D are used to infer spatial ρR variation

- The ice-block model (i.e., uniform densities in shell and hot spot) is a very good approximation for a target with radial density variation
- Some discrepancies exist between *MCNP* and *IRIS3D** codes
 - deuterium (n, 2n) cross sections are a major cause of differences within backscattering regions
- Perturbations in shell shape can be modeled as ellipse-shaped ice or offset hot spot
- Inferred ρR can be evaluated within backscattering and forwardscattering regions for ice blocks and ice blocks with perturbations

Collaborators

O. M. Mannion, C. J. Forrest, J. P. Knauer, K. S. Anderson, and P. B. Radha

> University of Rochester Laboratory for Laser Energetics

The ice-block model involves uniform densities of DT gas surrounded by DT ice

- Uniform density in the hot spot and shell
 - $-\rho R_{\text{shell}} = 0.2 \text{ g/cm}^2$
 - $-\rho_{shell} = 100 \text{ g/cm}^3 (20\text{-eV shell}), \rho_{hs} = 0.5 \text{ g/cm}^3 (4\text{-keV hot spot})$
 - $-R_{in} = 25 \ \mu m, R_{out} = 45 \ \mu m$
- Second radial-density profile from 1-D simulation (LILAC)

E26792

MCNP spherical target with LILAC radial-density profile

The neutron spectrum can be used to determine ρR distribution

MCNP and **IRIS** ice-block spectra differ in backscattering regions

MCNP and IRIS neutron spectra lead to a similar ρR for an ice-block model

- Noticeable differences in the nT scattering region (~3.5 to 6.0 MeV)
- Similar values of inferred ρR at \geq 6 MeV
 - IRIS ~ 0.209 g/cm² (1.05 ρR_0) versus MCNP ~ 0.214 g/cm² (1.07 ρR_0)

ROCHESTER

Offset hot-spot/asymmetrical ice thickness causes changes to elastic scattering and forward scattering

• The hot-spot offset is 5 μ m toward or away from the detector

E26796

Kochester

Results for detection on line of sight of offset agree with MCNP simulations^{*}

^{*}C. J. Forrest et al., JO4.00005, presented at the 56th Annual Meeting of the APS Division of Plasma Physics, New Orleans, LA, 27-31 October 2014.

Perturbations in shell shape can be simulated by modeling the ice as an ellipse

- The spherical hot spot is surrounded with elliptical ice
- Volume conserved ($\pi ab^2 = \pi r^3$); tested a/b = 1.5 and a/b = 2.0 so far -a/b = 1.5: $a \sim 59 \ \mu m$, $b \sim 39 \ \mu m$
 - $-a/b = 2.0: a \sim 71 \ \mu m, b \sim 36 \ \mu m$

← Symmetric ice block (*MCNP*) \leftrightarrow Ellipse with a/b = 1.5 (MCNP) ↔ Ellipse with a/b = 2.0 (MCNP)

Both MCNP and IRIS results show the expected trends for the relevant cases

The perturbation in the ice shape can be distinguished from variations in the density of a spherical target

• Can we distinguish between elliptical ice and "elliptical" density in spherical ice?

• Spherical ice with variable density is very similar to a regular ice-block model up to 10 MeV

- $\frac{\rho_1}{\rho_0} = \frac{b}{r}, \frac{\rho_2}{\rho_0} = \frac{a}{r}$

Spectra from MCNP and IRIS3D are used to infer spatial ρR variation

- The ice-block model (i.e., uniform densities in shell and hot spot) is a very good approximation for a target with radial density variation
- Some discrepancies exist between *MCNP* and *IRIS3D** codes
 - deuterium (n, 2n) cross sections are a major cause of differences within backscattering regions
- Perturbations in shell shape can be modeled as ellipse-shaped ice or offset hot spot
- Inferred ρR can be evaluated within backscattering and forwardscattering regions for ice blocks and ice blocks with perturbations

