Finite Atwood Number Effects on Deceleration-Phase Instability in Room-Temperature Direct-Drive Implosions

S. C. Miller
University of Rochester
Laboratory for Laser Energetics

Classically unstable material interface

OMEGA direct-drive room-temperature target

DT vapor

0.1 μm Al

27.0 μm CH

430 μm

59th Annual Meeting of the American Physical Society
Division of Plasma Physics
Milwaukee, WI
23–27 October 2017
Observed T_i variation decreases with increasing Atwood number in room-temperature implosions

- Room-temperature implosions have a finite Atwood number at the fuel–pusher interface that creates short-scale Rayleigh–Taylor (RT) growth during the deceleration phase.
- Simulations indicate residual kinetic energy in the core contributes to ion-temperature variation*;**
- Increasing the Atwood number (by changing the D:T ratio) results in increased short-scale growth and reduced bulk-fluid motion.
- Low Atwood number room-temperature targets, with reduced short-scale RT growth, have large ΔT_i similar to cryogenic targets.

** T. J. Murphy, Phys. Plasmas 21, 072701 (2014).
Collaborators

University of Rochester
Laboratory for Laser Energetics
Significant variations in DT ion temperature are observed in cryogenic implosions on OMEGA

- Ion temperature is observed from multiple lines of sight on OMEGA \(\rightarrow \Delta T_i \)
- Significant variation is caused by long-wavelength nonuniformities* – no classically unstable material interface in cryogenic targets

Room-temperature D–T and D–D implosions show much smaller \(\Delta T_i \).**

One hypothesis is that deceleration-phase short-scale RT growth in room-temperature implosions reduces ΔT_i

Classical Rayleigh–Taylor growth rate

$$\gamma = \sqrt{A_T kg}$$

$$A_T = \frac{\rho_{\text{pusher}}/\rho_{\text{fuel}} - 1}{\rho_{\text{pusher}}/\rho_{\text{fuel}} + 1}$$

$$\frac{\rho_{\text{pusher}}}{\rho_{\text{fuel}}} = \frac{m_{\text{pusher}}^{\text{i}}}{m_{\text{fuel}}^{\text{i}}} \frac{1 + Z_{\text{fuel}}}{1 + Z_{\text{pusher}}}$$
Higher Atwood numbers result in larger single-mode growth rates

DRACO single-mode ($\ell = 40$) simulation

“Peak-to-valley”

- Gas
- Shell

DRACO multimode ($\ell = 4, 20, 200$) simulation

1-D interface

Mass density (g/cm3)

- 40
- 30
- 20

Graph:

- 10:90, $\ell = 40$
- 30:70, $\ell = 40$
- 50:50, $\ell = 40$
- 30:70, $\ell = 80$
- 50:50, $\ell = 80$

Return shock interaction

Distance (μm)

0 20 40 60 80

Time (ns)

2.0 2.1 2.2 2.3 2.4 2.5 2.6

Experiments to systematically change the Atwood number at the fuel–pusher interface were conducted on OMEGA

- Systematically vary D:T ratio for the same target and pulse shape
 - 860-μm-diam, 27-μm-thick CH, 10-atm DT fill

<table>
<thead>
<tr>
<th>D (%)</th>
<th>T (%)</th>
<th>Atwood number*</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
<td>0.05 Unstable</td>
</tr>
<tr>
<td>25</td>
<td>75</td>
<td>0.00 Neutral</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>−0.03 Stable</td>
</tr>
</tbody>
</table>

*Atwood number at the start of the deceleration phase
Target performance improves relative to predictions with increasing Atwood number

- Contrary to intuition, yield-over-clean improves with increasing Atwood number (more short-scale growth)
Increased yield correlates with higher ion temperatures

\[\frac{Y_{10:90}}{Y_{50:50}} \sim \left(\frac{T_{i_{10:90}}^{avg}}{T_{i_{50:50}}^{avg}} \right)^{4.5} \rightarrow \left(\frac{2.45}{2.7} \right)^{4.5} = 0.65 \]
Higher inferred T_i is a result of short-scale RT growth preventing the fuel from penetrating into the cold bubbles

Low Atwood number
- Low-mode asymmetries only
- Larger ΔT_i along different lines of sight
- Fuel flows into cold bubbles because of bulk-fluid motion

High Atwood number
- Smaller hot spot, but more “1-D” → improved yield-over-clean
- Short-scale growth prevents fuel from flowing into cold bubbles

Larger ΔT_i, similar to cryogenic implosions

“1-D” hot spot

Short-scale mix region

Less ΔT_i
Larger ion-temperature variation is observed for lower Atwood numbers similar to cryogenic implosions

- Simulations indicate that higher bulk flows lead to higher ΔT_i
Summary/Conclusions

Short-scale Rayleigh–Taylor growth reduces the effects of bulk fluid motion in room-temperature implosions

- Room-temperature implosions have a finite Atwood number at the fuel–pusher interface that creates short-scale Rayleigh–Taylor (RT) growth during the deceleration phase.
- Simulations indicate residual kinetic energy in the core contributes to ion-temperature variation*,**
- Increasing the Atwood number (by changing the D:T ratio) results in increased short-scale growth and reduced bulk-fluid motion.
- Low Atwood number room temperature targets, with reduced short-scale RT growth, have large \(\Delta T_i \) similar to cryogenic targets.

Future multimode simulations are the next step to demonstrate short-scale growth effects on ion-temperature variation.

** T. J. Murphy, Phys. Plasmas 21, 072701 (2014).