Finite Atwood Number Effects on Deceleration-Phase Instability in Room-Temperature Direct-Drive Implosions

Milwaukee, WI

Summarv

Observed *T*_i variation decreases with increasing Atwood number in room-temperature implosions

- Room-temperature implosions have a finite Atwood number at the fuel-pusher interface that creates short-scale Rayleigh–Taylor (RT) growth during the deceleration phase
- Simulations indicate residual kinetic energy in the core contributes to ion-temperature variation*,**
- Increasing the Atwood number (by changing the D:T ratio) results in increased short-scale growth and reduced bulk-fluid motion
- Low Atwood number room-temperature targets, with reduced short-scale RT growth, have large ΔT_i similar to cryogenic targets

Collaborators

J. P. Knauer, C. J. Forrest, P. B. Radha, V. N. Goncharov, O. M. Mannion, T. J. B. Collins, J. A. Marozas, and K. S. Anderson

> University of Rochester Laboratory for Laser Energetics

Significant variations in DT ion temperature are observed in cryogenic implosions on OMEGA

- Ion temperature is observed from multiple lines of sight on OMEGA $\rightarrow \Delta T_i$
- Significant variation is caused by long-wavelength nonuniformities*
 - no classically unstable material interface in cryogenic targets

Room-temperature D–T and D–D implosions show much smaller ΔT_i .**

*I. V. Igumenshchev et al., Phys. Plasmas 23, 052702 (2016). **M. Gatu Johnson et al., Phys. Rev. E 94, 021202(R) (2016).

One hypothesis is that deceleration-phase short-scale RT growth in room-temperature implosions reduces ΔT_i

$$\gamma = \sqrt{A_T kg}$$
$$A_T = \frac{\rho_{\text{pusher}} / \rho_{\text{fuel}} - 1}{\rho_{\text{fuel}} + 1}$$

$$^-
ho_{
m pusher}/
ho_{
m fuel}$$
 + 1

$$\frac{\rho_{\text{pusher}}}{\rho_{\text{fuel}}} = \frac{m_{\text{i}}^{\text{pusher}}}{m_{\text{i}}^{\text{fuel}}} \frac{1 + Z_{\text{fuel}}}{1 + Z_{\text{pusl}}}$$

E26780

Classical Rayleigh–Taylor growth rate

Higher Atwood numbers result in larger single-mode growth rates

ROCHESTER

Experiments to systematically change the Atwood number at the fuel-pusher interface were conducted on OMEGA

- Systematically vary D:T ratio for the same target and pulse shape
 - 860- μ m-diam, 27- μ m-thick CH, 10-atm DT fill

Target configurations

D (%)	T (%)	Atwo
50	50	0.05
25	75	0.00
10	90	-0.03

*Atwood number at the start of the deceleration phase

Target performance improves relative to predictions with increasing Atwood number

• Contrary to intuition, yield-over-clean improves with increasing Atwood number (more short-scale growth)

E26784

Increased yield correlates with higher ion temperatures

Higher inferred T_i is a result of short-scale RT growth preventing the fuel from penetrating into the cold bubbles

Low Atwood number

- Low-mode asymmetries only
- Larger ΔT_i along different lines of sight
- Fuel flows into cold bubbles because of bulk-fluid motion

Larger ΔT_i , similar to cryogenic implosions **High Atwood number**

- Smaller hot spot, but more "1-D" \rightarrow improved yield-over-clean
- Short-scale growth prevents fuel from flowing into cold bubbles

E26813

"1-D" hot spot

Larger ion-temperature variation is observed for lower Atwood numbers similar to cryogenic implosions

• Simulations indicate that higher bulk flows lead to higher ΔT_i

Short-scale Rayleigh–Taylor growth reduces the effects of bulk fluid motion in room-temperature implosions

- Room-temperature implosions have a finite Atwood number at the fuel-pusher interface that creates short-scale Rayleigh–Taylor (RT) growth during the deceleration phase
- Simulations indicate residual kinetic energy in the core contributes to ion-temperature variation*,**
- Increasing the Atwood number (by changing the D:T ratio) results in increased short-scale growth and reduced bulk-fluid motion
- Low Atwood number room temperature targets, with reduced short-scale RT growth, have large ΔT_i similar to cryogenic targets

Future multimode simulations are the next step to demonstrate short-scale growth effects on ion-temperature variation.

