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• While the discrepancy shown above is large it is greatly reduced 
through order, noise, and additional physics

• More information can be gained through measuring multiple k vectors

Expanded Thomson Scattering

• Here it is easiest to compare with the Bohm–Gross dispersion relation
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A.B. Langdon1 proposed that stable non-Maxwellian distribution functions are realized in 
coronal inertial confi nement fusion (ICF) plasmas via inverse bremsstrahlung heating. For 

/Z v vosc th
2 2  > 1 the inverse bremsstrahlung heating rate is sufficiently fast to compete with 

electron–electron collisions. This process preferentially heats the subthermal electrons 
leading to super-Gaussian distribution functions.  

A method to identify the super-Gaussian order of the distribution functions in these plasmas using 
collective Thomson scattering will be proposed. By measuring the collective Thomson spectra over 
a range of angles the density, temperature and super-Gaussian order can be determined. This is 
accomplished by fi tting non-Maxwellian distribution data with a super-Gaussian model; in order to 
match the density and electron temperature to within 10%, the super-Gaussian order must be varied.

A.B. Langdon [Phys. Rev. Lett. 44, 575 (1980)] proposed that stable non-Maxwellian distribution functions are realized in coronal inertial confi nement fusion (ICF) plasmas via inverse bremsstrahlung heating. For /Z v vosc th
2 2  > 1 the inverse 

bremsstrahlung heating rate is sufficiently fast to compete with electron–electron collisions. This process preferentially heats the subthermal electrons leading to super-Gaussian distribution functions.  A method to identify the super-
Gaussian order of the distribution functions in these plasmas using collective Thomson Scattering will be proposed. By measuring the collective Thomson spectra over a range of angles the density, temperature and supper-Gaussian 
order can be determined. This is accomplished by fi tting non-Maxwellian distribution data with a super-Gaussian model, in order to match the density and electron temperature to within 10% the super-Gaussian order must be varied.
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Abstract

• The study of plasma is based around the 
distribution function

• Maxwellian distribution is used because of the ease 
of use and physical signifi cance, but it does not 
capture physics such as heat transport

• Super-Gaussian distribution functions are physically 
realized through inverse bremsstrahlung heating2

Background

, , –

/
/

/m
m

m

expf x v t C v v

M
k T n

v
m3

5
3

4 3

m m m

m
e

e
m

e

m

B2
3rC

C

C

= m/

v and C= =

^

^
^

^

^

h

h
h

h

h

8 B

• A. B. Langdon1 found that inverse bremsstrahlung 
heating leads to a fi fth-order super-Gaussian 
distribution

• He identifi es this effect with the competition between 
heating and electron–electron collisions

• Further work by E. Fourkal et al.3 shows the 
distribution function is only modifi ed for low-energy 
electrons leading to Gaussian tails

• This results in less discrepancy between the spectra 
for different orders

Langdon Effect and Gaussian Tails
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• Non-Maxwellian distribution functions allow for 
additional physics, which is important to many areas 
of plasma physics

• Collective Thomson scattering is sensitive to 
distribution function

• Expanded Thomson scattering can be used to 
determine the distribution and map dispersion 
relations

• The next steps are to examine the sensitivity of 
the spectrum with respect to order and determine 
constraints for measurements

1A. B. Langdon, Phys. Rev. Lett. 44, 575 (1980).
2J. P. Matte et al., Plasma Phys. Control. Fusion 30, 1665 (1988).
3E. Fourkal et al., Phys. Plasmas 8, 550 (2001).

Conclusions and Future Work

References

• A laser is scattered by a plasma wave yielding a spectrum 
containing information about the density and temperature 
of the plasma

• The scattered spectrum is given by

• Where k and ~ are determined by the matching conditions

• Therefore, the spectrum is a function of temperature, density, 
and super-Gaussian order

• The effect of order can be seen by comparing spectra from 
m = 2 (Maxwellian) and m = 5

Thomson Scattering

e

, –

,
– –

, , ,

k

k dv
k v

k v

k k k

/

S k f k k
Z f k

m k

e n

i

f

2 1 2

4

e
e

e
i

e,i
e,i

e,i e,i e,i

e i

2

0

2

0

2

2

:

:2 2

e e~ r | ~ r | ~

~
r

~ c

~ ~ ~

= +

3

3

–

| =

1 | |= + +

^

^

^ ^

a

^

ah

h

h

k

h h

k

#

– –k k ks s0 0~~ ~= =

100

90

80

70

60

50

40

30

20

10

0
400 450 500

Wavelength (nm)

Simulated Thomson spectrum

A
m

p
lit

u
d

e 
(a

rb
it

ra
ry

 u
n

it
s)

550 600 650 700

m = 2
m = 3
m = 4
m = 5

1

2

3

4

0
400 450 500

Wavelength (nm)

Simulated Thomson spectrum

A
m

p
lit

u
d

e 
(a

rb
it

ra
ry

 u
n

it
s)

550 600 650 700

Maxwellian
Langdon

400

120

110

100

90

80

70

60

1.1

1.0

1.2

1.3

1.4

~
k/

k 0
"

"

1.5

1.6

1.7

420 440

Electron plasma wave (EPW) feature
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