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A.B. Langdon? proposed that stable non-Maxwellian distribution functions are realized in A method to identify the super-Gaussian order of the distribution functions in these plasmas using
coronal inertial confinement fusion (ICF) plasmas via inverse bremsstrahlung heating. For collective Thomson scattering will be proposed. By measuring the collective Thomson spectra over
Zv2_./v3 > 1 the inverse bremsstrahlung heating rate is sufficiently fast to compete with a range of angles the density, temperature and super-Gaussian order can be determined. This is
electron—electron collisions. This process preferentially heats the subthermal electrons accomplished by fitting non-Maxwellian distribution data with a super-Gaussian model; in order to
leading to super-Gaussian distribution functions. match the density and electron temperature to within 10%, the super-Gaussian order must be varied.

Background Expanded Thomson Scattering Langdon Effect and Gaussian Tails

* The study of plasma is based around the e While the discrepancy shown above is large it is greatly reduced e A.B. Langdon? found that inverse bremsstrahlung
distribution function through order, noise, and additional physics heating leads to a fifth-order super-Gaussian

= distribution
e Maxwellian distribution is used because of the ease * More information can be gained through measuring multiple k vectors

of use and physical significance, but it does not * He identifies this effect with the competition between
capture physics such as heat transport . heating and electron—electron collisions

e Super-Gaussian distribution functions are physically
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e This results in less discrepancy between the spectra
for different orders
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* A laser is scattered by a plasma wave yielding a spectrum
containing information about the density and temperature
of the plasma
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* The scattered spectrum is given by
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e Here it is easiest to compare with the Bohm-Gross dispersion relation J
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e Where k and w are determined by the matching conditions

Electron plasma wave (EPW) feature EPW feature versus 0
kK=ks—Ky @=ws— 0wy versus O at ng = 1020 T, = 1 keV atng = 1020 T, = 1 keV
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 Therefore, the spectrum is a function of temperature, density .'

and super-Gaussian order |I : Conclusions and Future Work
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* The effect of order can be seen by comparing spectra from |
m = 2 (Maxwellian) and m =5

 Non-Maxwellian distribution functions allow for
additional physics, which is important to many areas
of plasma physics

e Collective Thomson scattering is sensitive to

Simulated Thomson spectrum distribution function
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o e Expanded Thomson scattering can be used to
—m-=2 determine the distribution and map dispersion

—m=3 ] relations
—m=4

—m=5 ' e The next steps are to examine the sensitivity of
the spectrum with respect to order and determine
constraints for measurements
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