Subpercent Scale Control of 3-D Modes 1, 2, and 3 of Targets Imploded in Direct-Drive Configuration on OMEGA

D.T. Michel **University of Rochester** Laboratory for Laser Energetics

ROCHESTER

59th Annual Meeting of the **American Physical Society Division of Plasma Physics** Milwaukee, WI 23-27 October 2017

Summarv

Improved drive symmetry has been demonstrated on OMEGA

- In a series of direct-drive implosions, multiple self-emission x-ray images were used to tomographically measure their 3-D modes 1, 2, and 3 at a convergence ratio of ~3
- The target modes were shown to vary linearly with the laser modes from approximately constant static modes
- This demonstrated that the target modes can be mitigated by adjusting the laser beam-energy balance to compensate the static modes

This method was applied to low-adiabat shots and made it possible to reduce the low-mode nonuniformities from 3.5 μ m to 1 μ m.

2

Collaborators

I. V. Igumenshchev, A. K. Davis, D. H. Edgell, D. H. Froula, D. W. Jacobs-Perkins, V. N. Goncharov, S. P. Regan, R. Shah, A. Shvydky, and E. M. Campbell

> University of Rochester Laboratory for Laser Energetics

Self-emission shadowgraphy* from multiple lines of sight was used to tomographically measure the 3-D modes $\ell = 1$, $\ell = 2$, and $\ell = 3$ of targets imploded on OMEGA

*D. T. Michel et al., Rev. Sci. Instrum. <u>83</u>, 10E530 (2012); D. T. Michel et al., High Power Laser Sci. Eng. <u>3</u>, e19 (2015). ** Y_{ℓ}^{m} are the tesseral spherical harmonics, E. T. Whittaker and G. N. Watson, *A Course of Modern Analysis* (Cambridge University Press, 1927), p. 392; *R* (θ , ϕ) is normalized in percent ($r_{0}^{0} = 100\%$).

On each camera, the angular variation of the projected ablation contour $R(\theta)$ was determined for an averaged radius of 150 μ m

The 3-D shape of the target was obtained by orienting the four contours perpendicular to the camera axis.

The target motion was obtained by comparing the positions of the contours centers with the corresponding contour centers measured on a nonimploding solid CH ball shot

The target motion at 150 μ m was obtained using linear fits.*

90th percentile of the student's t distribution

* $\delta(\Delta R_{center}) = \pm 1.3 \ \mu m$, resulting, in $\delta[(\Delta R_{center})_{150}] = \pm 0.6 \ \mu m$ at the

The 3-D target displacement is located at the intersection of the four lines defined by the camera axis, translated by the measured projected target motions

Shifted diagnostic line of sight

For each mode ℓ , a linear evolution of the target modes (Δr_{ℓ}^{m}) with the laser beam-energy balance (Δe_{ℓ}^{m}) was measured

*The laser modes are obtained by minimizing \sum the averaged beam energy.

$$\sum_{\ell=0}^{3} \sum_{m=-1}^{\ell} \sqrt{4\pi} e_{\ell}^{m} Y_{\ell}^{m} (\theta_{b}, \phi_{b}) - E_{b}, \text{ where is } E_{b},$$

is the beam energy normalized to

This demonstrates that the target modes can be mitigated by adjusting the laser modes to compensate the static modes.

This method was successfully applied to mitigate the target nonuniformities on a low-adiabat warm implosion

E26770

Improved drive symmetry has been demonstrated on OMEGA

- In a series of direct-drive implosions, multiple self-emission x-ray images were used to tomographically measure their 3-D modes 1, 2, and 3 at a convergence ratio of ~3
- The target modes were shown to vary linearly with the laser modes from approximately constant static modes
- This demonstrated that the target modes can be mitigated by adjusting the laser beam-energy balance to compensate the static modes

This method was applied to low-adiabat shots and made it possible to reduce the low-mode nonuniformities from 3.5 μ m to 1 μ m.

Over three shots, the beam-energy balance was changed to modify their modes $\ell = 1$, $\ell = 2$, $\ell = 3$, and for m = 0

$$\overline{E} (\theta_{b}, \phi_{b}) = \sum_{\ell=0}^{3} \sum_{m=-1}^{\ell} \sqrt{4\pi} e_{\ell}^{m} Y_{\ell}^{m} (\theta_{b}, \phi_{b})^{*}$$

$$\frac{Shots}{4633 \text{ versus } 84629} -2.2 -2.6 2.4$$

$$4634 \text{ versus } 84629 2.2 2.2 -3.5$$

$$\ell = 3$$

 $C_{\varrho} = \Delta r_{\varrho}^{m} (150 \ \mu m) / \Delta e_{\varrho}^{m}$

3

0

The low-mode coupling coefficients were determined by measuring the variation of the target modes (Δr_{θ}^{m}) as a function of the laser beam-energy balance (Δe_{θ}^{m}) .

**The modes are obtained by minimizing

$$\sum_{\ell=0}^{\infty} \sum_{m=-1}^{\infty} \sqrt{4\pi} e_{\ell}^{m} Y_{\ell}^{m} (\theta_{b}, \phi_{b}) - \overline{E}_{b} \text{, where } \overline{E}_{b} \text{ is normalized}$$

8

8

alized to the averaged beam energy.

The target modes were obtained by decomposing the four contours translated by the target displacement over spherical harmonics

Errors of $\delta(r_1^m) = \pm 0.15\%$, $\delta(r_2^m) = \pm 0.1\%$, and $\delta(r_3^m) = \pm 0.1\%$ were obtained by simulating the errors in $[\Delta R(\theta)]_{150}$ and $[\Delta R_{center}]_{150}$.

E26772

The decrease of C_{ℓ} with ℓ was a result of the beam profiles that modify the amplitude of the laser modes on target*

- The laser modes are described by minimizing $(\partial A/\partial e_1^m = 0)$: $A = \sum_{b=1}^{60} \left[\sum_{\ell=0}^{\infty} \sum_{m=-1}^{\ell'} \sqrt{4\pi} e_{\ell}^m Y_{\ell}^m (\Theta_b) \right]$
- This results in
- $\sum_{\mathbf{b}=1}^{60} \left[\overline{E}_{\mathbf{b}} \mathbf{Y}_{\ell}^{m} \left(\boldsymbol{\Theta}_{\mathbf{b}}, \boldsymbol{\phi}_{\mathbf{b}} \right) \right] = \sum_{\ell'=0}^{\infty} \sum_{m'=-\ell'}^{\ell'} \sqrt{4\pi} \mathbf{e}_{\ell}^{m} \sum_{\mathbf{b}=1}^{60} \left[\mathbf{Y}_{\ell}^{m} \left(\boldsymbol{\Theta}_{\mathbf{b}}, \boldsymbol{\phi}_{\mathbf{b}} \right) \mathbf{Y}_{\ell'}^{m'} \left(\boldsymbol{\Theta}_{\mathbf{b}}, \boldsymbol{\phi}_{\mathbf{b}} \right) \right]$ $\approx \sum_{\ell'=0}^{\infty} \sum_{m'=-\ell'}^{\ell'} \sqrt{4\pi} \mathbf{e}_{\ell}^{m} \left(60/4\pi \right) \int_{\Omega} \left[\mathbf{Y}_{\ell}^{m} \left(\boldsymbol{\Theta}_{\mathbf{b}}, \boldsymbol{\phi}_{\mathbf{b}} \right) \mathbf{Y}_{\ell'}^{m'} \left(\boldsymbol{\Theta}_{\mathbf{b}}, \boldsymbol{\phi}_{\mathbf{b}} \right) \right] \approx \sum_{\ell'=0}^{\infty} \sum_{m'=-\ell'}^{\ell'} \sqrt{4\pi} \mathbf{e}_{\ell}^{m} \left(60/4\pi \right) \delta_{\ell\ell'} \delta_{mm'} \approx \sqrt{4\pi} \mathbf{e}_{\ell'}^{m} \left(60/4\pi \right) \delta_{\ell'} \delta_{mm'} \delta_{m$
- The mode decomposition of a single beam energy per solid angle on target is given by

$$\tilde{\boldsymbol{E}}_{\mathsf{b}}(\boldsymbol{\Theta},\boldsymbol{\phi}) = \overline{\boldsymbol{E}}_{\mathsf{b}} \sum_{\ell'=0}^{\infty} \frac{2\ell+1}{4\pi} \boldsymbol{a}_{\ell} \boldsymbol{P}_{\ell}(\cos \gamma) = \overline{\boldsymbol{E}}_{\mathsf{b}} \sum_{\ell=0}^{\infty} \boldsymbol{a}_{\ell} \sum_{m'=-\ell'}^{\infty} \boldsymbol{Y}_{\ell}^{m}(\boldsymbol{\Theta}_{\mathsf{b}},\boldsymbol{\phi}_{\mathsf{b}}) \boldsymbol{Y}_{\ell}^{m}(\boldsymbol{\Theta},\boldsymbol{\phi})$$

The mode decomposition of the total energy per solid angle on target is given by

$$\tilde{E}_{tot}(\Theta, \phi) = \frac{60}{4\pi} \sum_{b=1}^{60} \tilde{E}_{tot}(\Theta, \phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell'} \sqrt{4\pi} \tilde{e}_{\ell}^{m} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \frac{4\pi}{60} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \frac{4\pi}{60} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \frac{4\pi}{60} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \frac{4\pi}{60} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \frac{4\pi}{60} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \frac{4\pi}{60} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \frac{4\pi}{60} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \frac{4\pi}{60} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \frac{4\pi}{60} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \frac{4\pi}{60} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \frac{4\pi}{60} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \frac{4\pi}{60} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \frac{4\pi}{60} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \frac{4\pi}{60} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \frac{4\pi}{60} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \frac{4\pi}{60} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{ with: } \tilde{e}_{\ell}^{m} = \frac{a_{\ell}}{\sqrt{4\pi}} \sum_{b=1}^{60} \overline{E}_{b} Y_{\ell}^{m}(\Theta, \phi) \text{$$

$$\left[\frac{\mathbf{U}\mathbf{R}}{\mathbf{b}}, \boldsymbol{\varphi}_{\mathbf{b}} \right]^2$$

$(\boldsymbol{\theta}_{\mathbf{b}}, \boldsymbol{\phi}_{\mathbf{b}}) = \boldsymbol{a}_{\ell} \boldsymbol{e}_{\ell}^{\boldsymbol{m}},$

*S. Skupsky and K. Lee, J. Appl. Phys. <u>54</u>, 3662 (1983).

The decrease of C_{ℓ} with ℓ was a result of the beam profiles that modify the amplitude of the laser modes on target*

The modes of the laser beam energy balance are described by minimizing

$$\boldsymbol{A} = \sum_{b=1}^{60} \left[\sum_{\ell=0}^{3} \sum_{m=-1}^{\ell} \sqrt{4\pi} \, \boldsymbol{e}_{\ell}^{m} \, \boldsymbol{Y}_{\ell}^{m} \left(\boldsymbol{\theta}_{b}, \boldsymbol{\phi}_{b}\right) - \overline{\boldsymbol{E}}_{b} \right]^{2}$$

• Accounting for the beam profile, the mode decomposition of the total energy per solid angle on target is given by

$$E_{\text{tot}}(\theta,\phi) = \sum_{\ell=0}^{3} \sum_{m=-1}^{\ell} \sqrt{4\pi} e_{\ell}^{m} Y_{\ell}^{m}(\theta,\phi)$$

with $\tilde{e}_{\ell}^{m} = a_{\ell}$, where $a_{\ell} = 2\pi \int_{-1}^{1} \overline{E}_{b}(\theta,\phi) P_{\ell}(\cos\gamma) d(\cos\gamma)$

A constant coupling of the modes of the target irradiation pattern to the target modes is obtained of $C_{\varrho}/a_{\varrho} = -0.85 \pm 0.07$.

*S. Skupsky and K. Lee, J. Appl. Phys. <u>54</u>, 3662 (1983).

The 3-D shape of the target was obtained by orienting each contour perpendicular to the camera axis

An error of $\delta[\Delta R(\theta)]_{150}$ of 1 μ m was evaluated by comparing the contours at the connecting points; this error is comparable to the error of \pm 0.4 μ m estimated previously.

E26775

This method was applied to correct the target nonuniformities on a low-adiabat warm implosion

ROCHESTER