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A wavelength detuning (Dm0) cross-beam energy transfer (CBET)  
mitigation scheme improves coupling in direct drive

• Initial proof-of-principle Dm0 experiments on the NIF* successfully 
demonstrated CBET mitigation in polar direct drive (PDD)

 – the first Dm0 experiments measured changes in shape, shell trajectory, 
and scattered light as predicted by simulations

• The successful NIF Dm0 experiments lay the foundation for future 
improvements

 – larger Dm0, multiple wavelengths, flexible wavelength distribution, 
optimized spot shapes, larger targets, and lower adiabats 

• Symmetric direct drive (SDD) on OMEGA benefits from Dm0
 – DRACO simulations indicate that Dm0 achieves >100 Gbar
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Summary

* NIF: National Ignition Facility
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Wavelength-detuning studies on the NIF are part of the National ICF* Program

• Laser energy coupling (e.g., Dm0)
• Imprint
• Preheat

• Cryogenic implosions 
scaled from NIF 
ignition designs
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* ICF: inertial confinement fusion



CBET losses are included in the modeling  
to agree with multiple experimental measures

TC13869

• The outbound ray always gains energy regardless  
of color Å UV20<0 !mDa k

• Leads to shell nonuniformity; mitigation can correct

• Measurement constraints: 
scattered light, shell trajectory, 
bang time, and shock timing
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Mitigating CBET is important for high-yield, robust implosions

• Compensating for CBET losses  
by thinning the shell compromises 
its integrity

• CBET mitigation is the best option
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 V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).
*IFAR: in-flight aspect ratio
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Laser energy coupling loss caused by CBET can be mitigated in different 
domains that can be combined; temporal
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•  Temporal domain
 – multiplexing the beams  
reduces interaction

 – STUD* pulses

Ppeak

Pavg

Dt = 20 ps

* STUD: spike trains of uneven duration and delay; 
  B. Afeyan and S. Hüller, presented at IFSA 2011,  
  Bordeaux, France, 12–16 September 2011.
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Laser energy coupling loss caused by CBET can be mitigated in different 
domains that can be combined; temporal, spatial
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•  Spatial domain  
(reduce interaction volume)

 – dynamic spot shape
 - two stage**

 – spots smaller than target (e.g., R75)†

 - Graxicon***

 - KrF lasers (NRL)
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 – spot-masking 
apodization 
(SMA)

 – STUD* pulses

Ppeak

Pavg

Dt = 20 ps

 ** D. H. Froula et al., Phys. Plasmas 20, 082704 (2013).
 *** T. J. Kessler and H. Huang, presented at IFSA 2015, Seattle, WA, 20–25 September 2015.
 † S. P. Regan et al., Phys. Rev. Lett. 117, 025001 (2016); 117, 059903(E) (2016).

* STUD: spike trains of uneven duration and delay; 
  B. Afeyan and S. Hüller, presented at IFSA 2011,  
  Bordeaux, France, 12–16 September 2011.

•  Temporal domain
 – multiplexing the beams  
reduces interaction
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Laser energy coupling loss caused by CBET can be mitigated in different 
domains that can be combined; temporal, spatial, and spectral

•  Spectral domain
 – wavelength detuning; Dm0

 – wide bandwidth within each 
beam (e.g., SRRS‡)

 – lower intensity per band and 
incoherence disrupts growth
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energy from
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Target

•  Spatial domain  
(reduce interaction volume)

 – dynamic spot shape
 - two stage**

 – spots smaller than target (e.g., R75)†

 - KrF lasers (NRL)

 – spot-masking 
apodization 
(SMA)

 ** D. H. Froula et al., Phys. Plasmas 20, 082704 (2013).
 *** T. J. Kessler and H. Huang, presented at IFSA 2015, Seattle, WA, 20–25 September 2015.
 † S. P. Regan et al., Phys. Rev. Lett. 117, 025001 (2016); 117, 059903(E) (2016).
 ‡ SRRS: stimulated rotational Raman scattering;
    J. Weaver et al., “Spectral and Far-Field Broadening due to Stimulated Rotational Raman** 
  Scattering Driven by the Nike Krypton Fluoride Laser,” to be published in Applied Optics.

* STUD: spike trains of uneven duration and delay; 
  B. Afeyan and S. Hüller, presented at IFSA 2011,  
  Bordeaux, France, 12–16 September 2011.

 – STUD* pulses

Ppeak

Pavg

Dt = 20 ps

 - Graxicon***

8

16

0

t

8

16

0

t

8

16

0

t

8

16

0

t

•  Temporal domain
 – multiplexing the beams  
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Dm0 = {m1, m2, m3}

Inner cones, {m1, m2}
i = 23°, 30°

Outer cones, m3
i = 45°, 50°
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CBET mitigation is being explored on the NIF and OMEGA
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• Spectral domain
 – wavelength detuning on the NIF; Dm0

 –  Dm0 ~ !6 Å UV; great performance
 – recent LPSE simulations indicated TPD* mitigation

• OMEGA’s three-legged layout could be modified to 
support wavelength detuning

• Spatial domain 
 – OMEGA is planning to explore R75  
distributed phase plates (DPP’s)

* TPD: two-plasmon decay
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Cone-swapping in one hemisphere on the NIF induces a wavelength difference 
about the equator for the proof-of-principle experiments
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Port-color arrangement

• NIF’s current port-color mapping can be configured for ! . ( )A UV2 30mD = c

– armor glass support clips limit range

Two color
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Cone-swapping in one hemisphere on the NIF induces a wavelength difference 
about the equator for the proof-of-principle experiments
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• NIF’s current port-color mapping can be configured for ! . ( )A UV2 30mD = c

– armor glass support clips limit range

• Cone-swapping can be done in either hemisphere

Port-color arrangement Port-color repointing; after swap

Indicates quad-split ports

Equatorial
Dm0

Two color
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The equatorial wavelength difference concentrates CBET mitigation  
in the region dominated by losses
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• Cone-swapping leads to an asymmetric configuration
– remapping the fiber front end alleviates this constraint

Port-color repointing; after swap

Indicates quad-split ports
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Wavelength detuning CBET mitigation scheme for direct-drive
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Initial Dm0 experiments on the NIF demonstrated CBET mitigation using  
cone-swapping comparing detuning on/off
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* Analysis by D. Turnbull

NIF Equatorial Dm0 Campaign:
Designer: J. A. Marozas
RI: M. Hohenberger/M. J. Rosenberg/D. Turnbull
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Gated backlit radiographs (experimental or simulated)  
are used to infer the shell trajectory
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Gated backlit radiographs (experimental or simulated)  
are used to infer the shell trajectory

• Each whole image is post-processed to extract the shell

21



• Can be combined with nearest-neighbor partial images 
to enhance the signal-to-noise ratio
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Gated backlit radiographs (experimental or simulated)  
are used to infer the shell trajectory
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• A trajectory is then inferred by plotting the  
surface-weighted radial average
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Gated backlit radiographs (experimental or simulated)  
are used to infer the shell trajectory
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Improved equatorial coupling from wavelength detuning  
is inferred from gated radiographs

• The predicted and measured trajectories* show the 
expected faster implosion speeds near the equator
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* Analysis by D. Turnbull
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The polar self-emission measurements of the cone-swapping Dm0 experiments 
showed late-time core emission and m = 4 and 8 ring structures
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The source of the polar self-emission structure is reproduced  
in DRACO simulations

• The self-emitting sources in 
the equatorial view map onto 
rings in 2-D DRACO

• These 2-D rings map onto 
the four- and eightfold 
ring structure in the 
measurements

• The 3-D HYDRA hydrocode 
will be used to investigate 
this further
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Scattered-light measurements can be used to 
diagnose wavelength-detuning CBET mitigation
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Scattered-light measurements can be used to  
diagnose wavelength detuning CBET mitigation
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The integrated scattered-light data show some qualitative agreements  
with simulations for Dm0 shot N160821-002
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* Analysis by D. Turnbull
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Outline

Wavelength detuning CBET mitigation scheme for direct-drive



Balanced tricolor

Dm0
0
+6 Å (UV)
–6 Å (UV)

• Optimized spot-masking  
apodization; SMA-DPP’s

 – tailored shape
 - improves energy efficiency
 - improves uniformity

 – minimize over-the-horizon energy
 - CBET reduction

• Flexible color  
to port mapping

 – fiber front end

• Increased Dm0 range 
improves coupling

 – armor-glass clips
 – polarization rotation

TC13949

Additional capabilities on the NIF improve PDD target-energy coupling 
according to simulations
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Symmetry control with wavelength detuning  
requires the additional NIF facility capabilities
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Symmetry control with wavelength detuning  
requires the additional NIF capabilities

33

ExperimentSimulation

6000–600

x (nm)

y 
(n

m
)

6000–600

600

0

–600

N160821
Dm0 = !2.3 Å

Simulation
500

0

–500
–500 5000
x far field (nm)

y 
fa

r 
fie

ld
 (
n

m
)

Beyond 2020...

• The iPDD* design demonstrates the 
benefits of all improvements

 – optimized SMA spots; all ports

 – large color separation with 
balanced tricolor;  
Dm0 = {–6, 0, 6} Å, UV

 – flexible color-to-port mapping

• Achieved high convergence, yields, 
and uniformity for a triple-picket pulse

 * D. Cao et al., Bull. Am. Phys. Soc. 60, 29 (2015);
    J. A. Marozas et al., Bull. Am. Phys. Soc. 60, 167 (2015).

• The first Dm0 PDD experiments 
were successful

• Results were limited by:

 – spot shape; phase plates

 – color separation; larger Dm0 

 – color-to-port mapping "  
cone swapping
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Symmetry control with wavelength detuning  
requires the additional NIF facility capabilities
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ExperimentSimulation
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Beyond 2020...Next step...

Proposal:
improve symmetry

with SMA spots

• SMA-DPP’s optimized for PDD

 – improve shell uniformity

 – higher convergence

 – rounder shells and hot spots

• Populating the 16 quads repointed  
to the equator

 – demonstrates improvements

• Swapping current DPP’s would also help

• The iPDD* design demonstrates the 
benefits of all improvements

 – optimized SMA spots; all ports

 – large color separation with 
balanced tricolor;  
Dm0 = {–6, 0, 6} Å, UV

 – flexible color-to-port mapping

• Achieved high convergence, yields 
and uniformity for a triple-picket pulse

 * D. Cao et al., Bull. Am. Phys. Soc. 60, 29 (2015);
    J. A. Marozas et al., Bull. Am. Phys. Soc. 60, 167 (2015).

• The first Dm0 PDD experiments 
were successful

• Results were limited by:

 – spot shape; phase plates

 – color separation; larger Dm0 

 – color-to-port mapping "  
cone swapping
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Wavelength detuning CBET mitigation scheme for direct-drive
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Simulations predict that combining Dm0 and SMA-DPP’s achieves >100 Gbar  
with good shell uniformity on OMEGA cryo

• OMEGA’s three-legged layout 
could be modified to support 
wavelength detuning

• A tuned non-CBET simulation is employed as 
the reference to judge mitigation success 

 – successful mitigation schemes converge  
to this reference run
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Simulations without imbalances (everything ideal) and with imbalances (numbers 
only) demonstrate that Dm0 can achieve >100 Gbar with good uniformity
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Summary/Conclusions 

A wavelength detuning (Dm0) cross-beam energy transfer (CBET)  
mitigation scheme improves coupling in direct drive

* NIF: National Ignition Facility

• Initial proof-of-principle Dm0 experiments on the NIF* successfully 
demonstrated CBET mitigation in polar direct drive (PDD)

 – the first Dm0 experiments measured changes in shape, shell trajectory, 
and scattered light as predicted by simulations

• The successful NIF Dm0 experiments lay the foundation for future 
improvements

 – larger Dm0, multiple wavelengths, flexible wavelength distribution, 
optimized spot shapes, larger targets, and lower adiabats 

• Symmetric direct drive (SDD) on OMEGA benefits from Dm0
 – DRACO simulations indicate that Dm0 achieves >100 Gbar
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The CBET effect is modeled by generalizing collinear interacting plane waves 
to include arbitrary incidence angles and polarization*

• The exponential CBET gain or loss factor is given by
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****C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981).
****ASR = angular-spectrum representation
****P. Michel, LLE/LLNL Meeting (May 2014). 
** †IB = inverse bremsstrahlung
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The interaction of crossed laser beams within an expanding 
plasma causes CBET between beams

42

*C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981).

• This stimulated Brillouin scattering (SBS)-based interaction leads to a resonance condition for 
transferring energy between a pump ray and a probe ray by means of an ion-acoustic wave ka*

• The resonance condition peaks when the matching condition is met

k c
k v

a a

pump probe a fluid:- -~ ~
h =
^ h

;
;
loss
gain

0
0

1

2

h
h'

kpump

ka = kpump–kprobe 

vfluid

kprobe

Resonance (!1) occurs
in the neighborhood of 
the Mach-1 surface under 
typical conditions.
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The sidescatter mode causes an inbound beam-to-beam CBET exchange

• The sidescatter mode occurs when both beams are inbound or outbound
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• The resonance condition still peaks where the fluid is supersonic (small D~)

• The ka  is much smaller, however, and the angle ki a can be near orthogonal, 
which implies that the ka • Vfluid term no longer dominates

– the sign of the D~ can now determine gain/loss for smaller values

kpump

ka = kpump– kprobe 

vfluid
kprobe

Sidescatter mode

Target

ka

Hka

Vfluid

fluidk c k Vpump probe a a a :-~ ~ ~D = = +

Matching condition

k
klim cos

c
c M

Mc rV a a

a a

fluid a

ka&
"

-~ i
h
D

=t

This mode leads to 
nonuniformity without 
altering total deposition 
when activated in SDD*

* J. A. Marozas et al., presented at the 44th Annual Anomalous Absorption Conference, Estes Park, CO, 8–13 June 2014. 
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Successful wavelength detuning shifts the resonance
location sufficiently to mitigate CBET
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Parabolic locus 
of turning points

When probe rays are red-shifted, 
the resonance shifts to a lower Mach 
number where probe rays are blocked 
and/or have negligible intensity

When probe rays are blue-shifted, the 
resonance shifts to a higher Mach 
number where intersecting probe rays 
are negligible

Pump beam

Target

Probe beam

CBET causes probe rays
to extract energy from
high-intensity pump raysrc

• The magnitude of Dm0 determines the mitigation duration
– works for both symmetric and PDD
– tailoring the spot shape will help limit the required Dm0
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The backscatter mode dominates the CBET loss for directly driven targets

• The backscatter mode occurs for opposing beams
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fluidk c k Vpump probe a a a :-~ ~ ~D = = +

Matching condition

k
klim cos

c
c M

Mc rV a a

a a

fluid a

ka&
"

-~ i
h
D

=t

kpumpka = kpump–kprobe 

vfluid

kprobe

Backscatter mode

Pump beam

Target
rc

Probe beam

CBET causes probe rays
to extract energy from
high-intensity pump rays

ka

ika

vfluid

• The resonance condition peaks where the fluid is supersonic (small D~)

• As the frequency difference increases, the resonance condition shifts to lower/higher sonic speeds 
depending on the sign (e.g., 6. , . for A UVM 0 4 1 6 != - c" , )

– dominated by the ka • Vfluid term; its sign determines whether there is gain/loss
– frequency difference cannot alter the gain/loss unless it can counter the large 

ka • Vfluid term (e.g., !20-Å UV)

This mode leads to 
nonuniformity and alters
total deposition 
when activated in SDD*

* A. Shvydky et al., Bull. Am. Phys. Soc. 54, 307 (2009).
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The R75 SG4 induces a large , = 10 that is responsible for poor performance

• The R75 induces large 
perturbations at every 
Pent; DRACO captures this 
3-D feature on the poles

• The hex centers are worse

• The Pk2Pk is 10× worse 
than SMA90
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Results with imbalances show that Dm0 can acheive 100 Gbar
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CBET Dm0, UV
Far-field 

spot Eabs (%) Vimp 
(nm/ns)

Pabl 
(Mbar)

Phs 
(Gbar)

IFAR 
2/3 R0

YDT 
(×1014) Note

No 0 SG5 410 (410) Reference

Yes 0 SG5 55.0 281   57   30 16.2 0.07 Worst case

Yes 0 R75SG4 65.1 340   64   69 17.8 0.32 R75

Yes {!6,0} Å 
SMA 90%, 

SG3.3 73.5 381   88 111 22.1 0.97 Dm0

C
B
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T

 b
ra

ck
et

CBET + no Dm0 CBET + Dm0 
40

yl
 (
n

m
)

20

0
–40 –20 0

xl (nm)
20 –40 –20 0

xl (nm)
20

The performance of R75 suffers  
as result of the imbalances but 
not as severe as from the smaller 
spot (i.e., , = 10); the performance
will be worse in 3-D.

Power imbalance = 10% rms, mistiming = 5-ps rms, mispointing = 10-nm rms
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Compared to CBET mitigation strategies; summary

no CBET + SG5

• Reference run

• Successful mitigation 
strategies converge toward 
this run

• Intentionally achieves  
over 100 Gbar

CBET + NOdm0 + SG4R75

• Increases Pabl and Phs and YDD;  
but achieves <100 Gbar when  
everything is perfect; ~72 Gbar

• Comes at the expense of
 – higher sensitivity to port-geometry  
modal structure; i.e., , = 10

 – more sensitive to imbalances
 – smaller and distorted hot spot
 – on verge of compromised shell;  
will be worse in 3-D

• Any increase in laser drive will exacerbate 
all mode growth (low to high modes)  
and further degrade Pabl, Phs and YDD

• Larger targets decrease the mispointing 
sensitivity but adapting to smaller DPP’s 
in not advised

CBET + 6Å, (UV) + sma90SG3.3

• The best mitigation  
strategy to date

 – highest Pabl, Phs, and YDD

• Closely matches the reference 
run in drive  
and imprinted structure

• Potentially higher laser drive 
headroom going to 26 kJ; will 
improve Pabl, Phs, and YDD
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The balanced hemispheric detuning uses three wavelengths  
to improve drive and symmetry 

TC12464
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Bicolor
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Absorption fraction = 86.8% Absorption fraction = 89.1% Absorption fraction = 89.0%

• These detuning configurations all recover more laser absorption in PDD relative to SDD
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Simulations without imbalances (everything ideal) and with imbalances (numbers 
only) demonstrate that Dm0 can achieve >100 Gbar with good uniformity
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CBET Dm0, UV
Far-field 

spot Eabs (%) Vimp 
(nm/ns)

Pabl 
(Mbar)

Phs 
(Gbar)

IFAR* 
2/3 R0

YDT 
(×1014) Note

No 0 SG5 78.0 (78.7) 410 (410) 100 169 (166) 26.8 2.29 (2.67) Reference

Yes 0 SG5 55.1 280   57   32 15.7 0.09 Worst case

Yes 0 R75SG4 65.2 341   65   72 [69] 16.7 0.36 R75

Yes {!6,0} Å 
SMA 90%, 

SG3.3 73.6 382   89 119 [111] 21.6 1.17 Dm0
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