Indications of Bulk Fluid Motion in Direct-Drive Implosions

O. M. Mannion
University of Rochester
Laboratory for Laser Energetics

59th Annual Meeting of the American Physical Society
Division of Plasma Physics
Milwaukee, WI
23–27 October 2017
The neutron time-of-flight (nTOF) spectrum is now used to measure bulk flows on OMEGA implosions

- Inertial confinement fusion (ICF) implosions with low-mode asymmetries induce bulk flows in the capsule, leading to residual kinetic energy not transferred into heat energy
- Bulk flows manifest themselves in the nTOF spectrum as shifts in the neutron kinetic energy from their nominal peak values
- Measurements of the neutron spectrum on OMEGA indicate bulk flows as large as $60 \pm 20 \text{ km/s}$

Summary

Future work will extend this analysis to multiple lines of sight.
Collaborators

University of Rochester
Laboratory for Laser Energetics

M. Gatu Johnson

Plasma Science and Fusion Center
Massachusetts Institute of Technology
Bulk motion of the capsule reduces performance by leaving residual kinetic energy (KE) in the shell and hot spot.

Residual fuel KE = 68 J
Residual KE fraction ≈ 3%

Residual fuel KE = 120 J
Residual KE fraction ≈ 6%

The moments of the neutron spectrum encode essential diagnostic information about the reactants.

\[\langle E \rangle = E_0 + E_{th} + \Delta E_{V_{cm}} \]

\[\langle (E - \langle E \rangle)^2 \rangle \propto T \]
The petal detector* is used to measure the neutron spectrum.

The small scintillator volume results in a very narrow instrument response function.

*V. Yu. Glebov et al., CO8.00001, this conference.
Absolute timing calibration is achieved with an optical fiducial along with x-ray timing shots

- The optical fiducial\(^*\) enables accurate placement of the laser pulse and bang time on the time axis.

\(t_\gamma\) \hspace{1cm} \(t_{\text{delay}}\)

\(t_{14\text{ MeV}}\) \hspace{1cm} \(t_{\text{delay}}\)

The x-ray calibration shot allows us to quantify the inherent delay and determine an absolute timing axis.

\(^*\)LLE Review Quarterly Report 88, 171 (2001)
The forward-fitting procedure* is used to infer the first and second moments of the neutron spectrum.

\[m(t) = I[e(t)] \left| \frac{dE}{dt} \right| \otimes R(t) \]

Observed variation in the neutron kinetic energy peak in DT cryogenic implosions imply bulk fluid velocities as large as 60 ± 20 km/s.
Summary/Conclusions

The neutron time-of-flight (nTOF) spectrum is now used to measure bulk flows on OMEGA implosions

- Inertial confinement fusion (ICF) implosions with low-mode asymmetries induce bulk flows in the capsule, leading to residual kinetic energy not transferred into heat energy
- Bulk flows manifest themselves in the nTOF spectrum as shifts in the neutron kinetic energy from their nominal peak values
- Measurements of the neutron spectrum on OMEGA indicate bulk flows as large as 60 ± 20 km/s

Future work will extend this analysis to multiple lines of sight.