Experimental Results from the High-Adiabat Cryogenic Implosion Campaign on OMEGA

![Graph showing the relationship between LILAC implosion velocity and DT yield.]

J. P. Knauer
University of Rochester
Laboratory for Laser Energetics

59th Annual Meeting of the American Physical Society
Division of Plasma Physics
Milwaukee, WI
23–27 October 2017
Summary

High-adiabat implosions have proven to be a valuable technique to extend the performance of cryogenic target experiments

- Implosion velocities >500 km/s are achieved by lowering target mass and improving coupling
 - 330 km/s < implosions velocity < 520 km/s
- High-adiabat implosions show 1-D–like trends
 - ion temperature shows the expected 1-D scaling with implosion velocity
- The highest neutron yield achieved was 1.34×10^{14}
Collaborators

University of Rochester
Laboratory for Laser Energetics

M. Gatu Johnson and J. A. Frenje
Massachusetts Institute of Technology
Plasma Science and Fusion Center

*R. Betti, T12.00001, this conference (invited).
**V. Gopalaswamy et al., CO8.00010, this conference.
The target outer diameter and mass were varied to change the implosion velocity

- Target outer diameters (laser coupling*)
 - 860-µm minimum to 980-µm maximum
- Shells
 - CH: 8 µm thick
 - CD: 7.5 µm thick
- Cryogenic layer thickness
 - 53-µm maximum to 40.2-µm minimum
- 330 km/s < implosion velocity < 520 km/s

Single-picket laser pulse shapes were adjusted to match target parameters and study preheat

Picket height and width

Fixed pulse-shape adjustments

1. Timing of the drive relative to picket - set adiabat through shock timing
2. Height of the drive step - fine-tuned shock structure
3. Drive intensity - study preheat caused by “hot” electrons
4. Drive duration - tuned total energy of the drive
5. SSD* on/off - changed initial imprint seed

* SSD: smoothing by spectral dispersion
Ion temperature versus implosion velocity is explained by a 1-D scaling formula*

Best fit of Zhou–Betti formula to date

\[kT_{\text{Zhou}} = \frac{2.96}{\alpha^{0.15}} \cdot \left(\frac{V_{\text{imp}}}{300} \right)^{1.25} \]

\[\alpha = 5.3 \pm 1.0 \]

Average from LILAC 1-D hydrodynamic simulation

\[\alpha = 5.5 \pm 0.9 \]

Ion temperatures show the expected scaling.

Neither yield nor ion temperature are affected by SSD
The measured areal density decreases when SSD is off

Imprint may compromise the cold fuel layer but not the “hot spot.”

*GMXI: gated monochromatic x-ray imager
Yields $<10^{14}$ are correlated with reactivity calculated at the nTOF* ion temperatures

\[Y = f_T f_D n_{DT}^2 \sigma_{DT} V_{HS} t_b \]

for yield $>10^{14}$

DT kT_i may not be the thermal temperature

or

\[n_{DT}^2 V_{HS} t_b \]

is not constant

*nTOF: neutron time of flight
High-adiabat implosions show little residual kinetic energy*

The T_i ratio indicates that the temperature measurement reflects the thermal temperature.

The maximum center-of-mass speed projected along the 13.4-m nTOF line of sight* is $98 \pm 21 \text{ km/s}$

Higher implosion velocities show higher speeds except for two outlying shots.

*O. M. Mannion et al., CO8.00003, this conference.
The measured yield scales as the fourth power of the implosion velocity up to 500 km/s.

The maximum yield was 1.34×10^{14} neutrons.
High-adiabat implosions have proven to be a valuable technique to extend the performance of cryogenic target experiments

- Implosion velocities >500 km/s are achieved by lowering target mass and improving coupling
 - 330 km/s $< $ implosions velocity < 520 km/s
- High-adiabat implosions show 1-D–like trends
 - ion temperature shows the expected 1-D scaling with implosion velocity
- The highest neutron yield achieved was 1.34×10^{14}

Future experiments will use 1-D model to improve target ρr keeping yield high.