X-Ray Radiography of Laser-Driven Shocks for Inertial Confinement Fusion

A. Kar **University of Rochester** Laboratory for Laser Energetics

59th Annual Meeting of the **American Physical Society Division of Plasma Physics** Milwaukee, WI 23-27 October 2017

Summary

An x-ray postprocessor to the hydrodynamic code DRACO that images shocks has been developed

- The ray-tracing-based postprocessor includes refraction and attenuation of the x rays
- Refractive indices and opacities specific to the shock conditions obtained through first-principles equation-of-state (EOS) calculations* are used in the postprocessor
- Multiple shocks and shock breakouts can potentially be imaged using radiography

*S. X. Hu et al., Phys. Rev. B <u>96</u>, 144203 (2017).

Collaborators

T. R. Boehly, P. B. Radha, D. Cao, D. H. Edgell, S. X. Hu, A. Shvydky, V. N. Goncharov, and S. P. Regan

> University of Rochester Laboratory for Laser Energetics

Refraction of light across sharp density gradients is used to image shock fronts

VISAR* and OHRV** do not provide any information about the axial spatial location of shocks.

*VISAR: velocity interferometer system for any reflector ****OHRV: OMEGA high-resolution velocimeter**

An x-ray postprocessor to the hydrodynamic code DRACO that images the shock front has been

Both refraction and attenuation affect the intensity of x rays as they travel through a medium

ROCHESTER

TC13776

Refractive index of a medium Attenuation

High-energy x rays: early time (high ρ)

*S. X. Hu et al., Phys. Rev. B 96, 144203 (2017). **S. C. Mayo et al., J. Microsc. 207, 79 (2002).

Simulated radiographs suggest that high-energy x rays are required to image shocks at earlier times when the shock is being supported

TC13777

4.7 keV

A proof-of-concept experiment has previously been performed on OMEGA for 4.7-keV x rays

TC13801

Summary/Conclusions

An x-ray postprocessor to the hydrodynamic code DRACO that images shocks has been developed

- The ray-tracing-based postprocessor includes refraction and attenuation of the x rays
- Refractive indices and opacities specific to the shock conditions obtained through first-principles equation-of-state (EOS) calculations* are used in the postprocessor
- Multiple shocks and shock breakouts can potentially be imaged using radiography

*S. X. Hu et al., Phys. Rev. B <u>96</u>, 144203 (2017).