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Simulations indicate that the effects of laser imprint alone are insufficient  
to explain the underperformance of cryogenic a ~ 4 implosions on OMEGA

• The imprint model was developed and implemented in the 3-D 
hydrodynamics code ASTER*

• Simulations reproduce observed improvement in implosion 
performance when polarization smoothing** (PS) and smoothing  
by spectral dispersion† in two dimensions (2-D SSD) are applied

• Room-temperature targets suffer from imprint that introduces 
significant small-scale (, + 50 to 150) modulations

• Imprint in cryogenic implosions develops broadband modulations  
with dominant , + 30; these modulations have a moderate effect  
on the implosions
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Summary

 * I. V. Igumenshchev et al., Phys. Plasmas 23, 052702 (2016).
** T. R. Boehly et al., J. Appl. Phys. 85, 3444 (1999).
 † S. Skupsky et al., J. Appl. Phys. 66, 3456 (1989).
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ASTER models imprint in OMEGA implosions by calculating  
far-field intensity modulations
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• Evolution of the electric near field  
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• Evolution of the far-field (focal-spot) intensity  
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• Polarization smoothing: overlapping two copies  
of the intensity pattern separated by Dy = 86.4 nm
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ASTER models imprint in OMEGA implosions by calculating  
far-field intensity modulations (continued) 
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* R. Epstein, J. Appl. Phys. 82, 2123 (1997).
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Distributed 
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Calculated imprint patterns for all 60 OMEGA 
beams are projected onto a target

Spectrum of on-target 
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Three-dimensional ASTER simulations of shot 84629 include imprint  
and beam overlapping effects
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* RT: Rayleigh–Taylor
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OMEGA 2-D SSD reduces imprint perturbations by a factor of ~5
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Imprint introduces fuel–ablator material mix and increases the effective 
implosion adiabat by thickening the dense shell 
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Simulations indicate that cryogenic implosions are more affected  
by imprint at low modes (, < 50) and less at high modes (, + 100)
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neutron yield3-D = 9.785 × 1013/4.09 × 1013  (SSD on/off)



Hot-spot shape
(surface Ti = 1 keV)

Interface between 
the original DT ice 
and vapor materials

Density shell cross section
at neutron peak
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Imprint with applied 2-D SSD moderately affects  
mid-adiabat (a ~ 4) cryogenic OMEGA implosions
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D-D- .0 943 =1%YOU 74 hs hs= /PP

• Similar conclusions from DRACO simulations*

* P. B. Radha et al., CO8.00012, this conference.
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Effects other than imprint should be added into simulations  
to explain the underperformance of cryogenic OMEGA implosions
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• Low-mode nonuniformities*
 – target offset
 – beam power imbalance
 – beam mispointing
 – beam mistiming

• Surface defects (in progress)

• Target-engineering structures
 – stalk mount**
 – fill tube

the effect of shadow  
could be important

 * I. V. Igumenshchev et al., Phys. Plasmas 24, 056307 (2017).
** I. V. Igumenshchev et al., Phys. Plasmas 16, 082701 (2009).
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Summary/Conclusions 

 * I. V. Igumenshchev et al., Phys. Plasmas 23, 052702 (2016).
** T. R. Boehly et al., J. Appl. Phys. 85, 3444 (1999).
 † S. Skupsky et al., J. Appl. Phys. 66, 3456 (1989).

Simulations indicate that the effects of laser imprint alone are insufficient  
to explain the underperformance of cryogenic a ~ 4 implosions on OMEGA

• The imprint model was developed and implemented in the 3-D 
hydrodynamics code ASTER*

• Simulations reproduce observed improvement in implosion 
performance when polarization smoothing** (PS) and smoothing  
by spectral dispersion† in two dimensions (2-D SSD) are applied

• Room-temperature targets suffer from imprint that introduces 
significant small-scale (, + 50 to 150) modulations

• Imprint in cryogenic implosions develops broadband modulations  
with dominant , + 30; these modulations have a moderate effect  
on the implosions


