High-Energy-Density–Physics Studies for Inertial Confinement Fusion Applications

S. X. Hu **University of Rochester** Laboratory for Laser Energetics

American Physical Society Division of Plasma Physics Milwaukee, WI 23-27 October 2017

Summarv

Accurate intrinsic properties of plasmas under extreme conditions are essential for reliable inertial confinement fusion (ICF) target designs

- *First-principles* methods have been used to self-consistently calculate intrinsic properties of DT and ablators under extreme conditions
- These *ab initio* results, which can significantly differ from the predictions of traditional plasma models in the warm-dense-matter (WDM) regime, compared well with experiments
- Hydro simulations using these *first-principles* properties of DT and ablators have shown a significant difference in predicting target performance when compared with traditional model simulations

Knowing material properties better would result in a morereliable understanding and designing of ICF implosions.

TC13827

Collaborators

T. R. Boehly, Y. H. Ding, P. B. Radha, V. N. Goncharov, J. R. Rygg, G. W. Collins, S. P. Regan, and E. M. Campbell

> University of Rochester Laboratory for Laser Energetics

L. A. Collins and J. D. Kress

Theoretical Division Los Alamos National Laboratory

Outline

- Introduction: Why should we care about material properties under extreme conditions?
- *First-principles* methods and their applications to DT properties at high-energy-density (HED) conditions
- Ab-initio studies on ablator materials at HED conditions: How do they compare with traditional plasma models and experiments?
- Impact of these *first-principles* properties of both DT and ablators on ICF implosions
- Conclusions

TC13828

Outline

- Introduction: Why should we care about material properties under extreme conditions?
- *First-principles* methods and their applications to DT properties at high-energy-density (HED) conditions
- Ab-initio studies on ablator materials at HED conditions: How do they compare with traditional plasma models and experiments?
- Impact of these *first-principles* properties of both DT and ablators on ICF implosions
- Conclusions

TC13828a

Accurate knowledge of *intrinsic* plasma properties (EOS,* opacity, thermal conductivity, and stopping power) of DT and ablators is required for ICF simulations

ROCHESTER

TC5723f

*EOS: equation of state

ICF implosions routinely access the WDM regime,* which demands a better understanding of material properties

TC11490t

*S. X. Hu et al., Phys. Rev. Lett. 104, 235003 (2010).

A variety of models have been adopted in ICF hydrocodes to estimate the properties of WDM

- Equation of state
 - SESAME/Kerley03^{*} based on the chemical model of matter, with perturbations of many-body coupling and electron degeneracy
- Thermal conductivity (κ)
 - the Lee–More model** was based on the first-order approximation to the Boltzmann equation, while the *Purgatorio*⁺ (LLNL) is an average-atom model
- Opacity
 - the astrophysics opacity table (AOT)[‡] has no available data in the WDM regime

First-principles calculations using path-integral Monte Carlo (PIMC) and quantum molecular dynamics (QMD) can provide self-consistent and accurate properties of WDM.

^{*}G. I. Kerley, Phys. Earth Planet. Inter. <u>6</u>, 78 (1972); G. I. Kerley, Sandia National Laboratories, Albuquerque, NM, Report SAND2003-3613 (2003).

^{**} Y. T. Lee and R. M. More, Phys. Fluids 27, 1273 (1984).

[†]P. Sterne, Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-PROC-227242 (2006).

[‡]W. F. Huebner et al., Los Alamos National Laboratory, Los Alamos, NM, Report LA-6760-M (1977).

Outline

• Introduction: Why should we care about material properties under extreme conditions?

• *First-principles* methods and their applications to DT properties at high-energy-density (HED) conditions

- *Ab-initio* studies on ablator materials at HED conditions: How do they compare with traditional plasma models and experiments?
- Impact of these *first-principles* properties of both DT and ablators on ICF implosions
- Conclusions

TC13828b

Both PIMC and QMD methods have been used to self-consistently calculate intrinsic plasma properties under extreme conditions

• PIMC is based on the density-matrix representation of a quantum many-body system*

• QMD uses the density-functional theory** to simulate dense plasmas in two "flavors": [Kohn–Sham molecular dynamics (KSMD, orbital based) and orbital-free molecular dynamics (OFMD⁺)]

A wide range of DT plasma conditions has been investigated previously by PIMC and QMD methods

TC12246a

Significant differences have been identified for warm dense deuterium when **FPEOS**,* κ_{QMD} ,** and **FPOT**[†] are compared with traditional models

TC11448d

*FPEOS: first-principles equation of state; S. X. Hu et al., Phys. Rev. B 84, 224109 (2011). ** κ_{OMD} : QMD-based thermal conductivity; S. X. Hu et al., Phys. Rev. E 89, 043105 (2014). S. X. Hu et al., Phys. Rev. E 90, 033111 (2014).

Outline

- Introduction: Why should we care about material properties under extreme conditions?
- *First-principles* methods and their applications to DT properties at high-energy-density (HED) conditions
- Ab-initio studies on ablator materials at HED conditions: How do they compare with traditional plasma models and experiments?
- Impact of these *first-principles* properties of both DT and ablators on ICF implosions
- Conclusions

TC13828c

A wide range of plasma conditions of various ablators* are investigated by PIMC and QMD methods

Kochester

TC13613a

The calculated principal Hugoniot* of CH from FPEOS has been well compared with experiments

The Hugoniot temperature predicted by FPEOS is in better agreement with the experiment!

- Dynamic Material Properties (University of California Press, Berkeley, CA, 1980).
- [†]M. A. Barrios et al., Phys. Plasmas <u>17</u>, 056307 (2010).

TC12152t

^{*}S. X. Hu, T. R. Boehly, and L. A. Collins, Phys. Rev. E 89, 063104 (2014).

^{**} S. P. Marsh, ed. LASL Shock Hugoniot Data, Los Alamos Series on

Several different experimental observables show better agreement with FPEOS than SESAME EOS for CH

See T. R. Boehly talk at this conference, JO8.00007, for FPEOS comparison with sound-speed and Grüneisen parameter measurements in shocked CH.

> *P. B. Radha et al., "Shock Velocity Measurements at the National Ignition Facility," to be submitted to Physical Review E.

QMD predicted larger thermal conductivity* and opacity** in warm dense CH plasmas when compared to the models used in our hydrocodes

TC13615a Kochester

*S. X. Hu et al., Phys. Plasmas 23, 042704 (2016). **S. X. Hu et al., Phys. Rev. B 96, 144203 (2017).

The QMD-predicted carbon K-edge shifting in extremely dense and warm C* and CH** plasmas cannot be explained by plasma models

TC13616a

*S. X. Hu, Phys. Rev. Lett. 119, 065001 (2017); **S. X. Hu et al., Phys. Rev. B 96, 144203 (2017).

The physics picture of x-ray-absorption K-edge shifting in extremely dense and warm plasmas are different from classical plasma models

TC13830

Our quantum-physics-based models can explain the unusual K-edge shifting in extremely dense and warm plasmas

- Single atom in a box (SAIAB)/single mixture in a box (SMIAB) model (putting a single atom or mixture into a cubic box of $V = \rho/A$, with the periodic boundary condition)
 - solving the Kohn–Sham equation to determine E_{1s}

$$\left\{-\frac{1}{2}\nabla^{2}-\frac{Z}{r}+\int\frac{\rho_{e}(r')}{|r-r'|}dr'+V_{XC}[\rho_{e}](r)\right\}\varphi_{i}=E_{i}\varphi_{i};\rho_{e}=\sum_{i}|\varphi_{i}|^{2}$$

– using the average-atom model to gauge ionization $\langle Z \rangle$ for (ρ, T)

- calculating the Fermi surface: $E_{\rm F} = \frac{\hbar^2}{2m} [3\pi^2 \rho Z/A]^{2/3}$ for degenerate plasmas

20

At very high densities, a factor of ~2 difference in CH opacity between QMD* and LANL's ATOMIC** model is attributed to the different K-edge shifting

*S. X. Hu et al., Phys. Rev. B <u>96</u>, 144203 (2017). **N. R. Shaffer et al., High Energy Density Phys. <u>23</u>, 31 (2017).

Outline

- Introduction: Why should we care about material properties under extreme conditions?
- *First-principles* methods and their applications to DT properties at high-energy-density (HED) conditions
- Ab-initio studies on ablator materials at HED conditions: How do they compare with traditional plasma models and experiments?
- Impact of these *first-principles* properties of both DT and ablators on ICF implosions
- Conclusions

TC13828d

The effects of accurate intrinsic properties of DT and CH on ICF implosions have been studied through radiation-hydrodynamic simulations for 100-Gbar targets on OMEGA*

ROCHESTER

TC13833

* S. P. Regan et al., YO7.00007, this conference.

Differences in target performance are predicted between the *first-principles* based new models and the old plasma models for cryo DT targets on OMEGA

The effects of accurate intrinsic properties of DT and CH on direct-drive NIF* designs have also been tested

*NIF: National Ignition Facility

Significant variations in NIF target performance have been predicted using first-principles properties when compared to traditional plasma-model simulations

The lower ablation rate of CH could mean that we may need either more laser energy or thinner shells for ICF implosions.

TC13836

A factor of ~3 to 4 difference in ICF target gain is predicted using new first-principles properties versus old plasma-model simulations

Target performance	DT+CH (SESAME/AOT/K _{Lee-More})	DT+CH (FPEOS/FPOT/κ
$\left< ho {\sf R} \right>_{\sf n}$	0.807 g/cm ²	0.654 g/cm ²
$\langle \mathbf{T_i} \rangle_{\mathbf{n}}$	22.8 keV	11.2 keV
$\langle {m P} angle_{m n}$	999 Gbar	342 Gbar
$\langle oldsymbol{ ho} angle_{peak}$	602.9 g/cm ³	322.7 g/cm ³
R _{hot spot}	64.2 μm	87.6 <i>µ</i> m
C _{hot spot}	26.5	19.4
Yield	1.66 × 10 ¹⁹	4.26 × 10 ¹⁸
Gain	31.3	8.0

High gain may be recovered by using the *first-principles* based material properties to retune target designs.

27

Summary/Conclusions

Accurate intrinsic properties of plasmas under extreme conditions are essential for reliable inertial confinement fusion (ICF) target designs

- *First-principles* methods have been used to self-consistently calculate intrinsic properties of DT and ablators under extreme conditions
- These *ab initio* results, which can significantly differ from the predictions of traditional plasma models in the warm-dense-matter (WDM) regime, compared well with experiments
- Hydro simulations using these *first-principles* properties of DT and ablators have shown a significant difference in predicting target performance when compared with traditional model simulations

Knowing material properties better would result in a morereliable understanding and designing of ICF implosions.

TC13827

28

Backup

For silicon, our first-principles calculations predicted a much softer Hugoniot than traditional EOS models,* which seems consistent with preliminary experiments

*S. X. Hu et al., Phys. Rev. B <u>94</u>, 094109 (2016).

** B. Henderson *et al.*, presented at the 20th Biennial Conference of the APS Topical Group on Shock Compression of Condensed Matter, St. Louis, MO, 9–14 July 2017 (Abstract T6.00002).

TC13619a

