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Accurate intrinsic properties of plasmas under extreme conditions 
are essential for reliable inertial confinement fusion (ICF) target designs

•	First-principles methods have been used to self-consistently calculate 
intrinsic properties of DT and ablators under extreme conditions

•	 These ab initio results, which can significantly differ from the predictions 
of traditional plasma models in the warm-dense-matter (WDM) regime, 
compared well with experiments

•	 Hydro simulations using these first-principles properties of DT and 
ablators have shown a significant difference in predicting target 
performance when compared with traditional model simulations
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Summary

Knowing material properties better would result in a more- 
reliable understanding and designing of ICF implosions.
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Outline

•	 Introduction: Why should we care about material 
properties under extreme conditions?

•	First-principles methods and their applications to DT 
properties at high-energy-density (HED) conditions

•	Ab-initio studies on ablator materials at HED conditions: How do 
they compare with traditional plasma models and experiments?

•	 Impact of these first-principles properties of both DT 
and ablators on ICF implosions

•	 Conclusions
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Accurate knowledge of intrinsic plasma properties 
(EOS,* opacity, thermal conductivity, and stopping power) 
of DT and ablators is required for ICF simulations
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*	EOS: equation of state
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ICF implosions routinely access the WDM regime,* which demands 
a better understanding of material properties
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*	S. X. Hu et al., Phys. Rev. Lett. 104, 235003 (2010).
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A variety of models have been adopted in ICF 
hydrocodes to estimate the properties of WDM

•	 Equation of state

–– SESAME/Kerley03* based on the chemical model of matter, with perturbations 
of many-body coupling and electron degeneracy

•	 Thermal conductivity (l)

–– the Lee–More model** was based on the first-order approximation to the 
Boltzmann equation, while the Purgatorio† (LLNL) is an average-atom model

•	 Opacity

–– the astrophysics opacity table (AOT)‡ has no available data in the WDM regime

8

First-principles calculations using path-integral Monte Carlo (PIMC) and quantum molecular 
dynamics (QMD) can provide self-consistent and accurate properties of WDM.

	*	G. I. Kerley, Phys. Earth Planet. Inter. 6, 78 (1972); G. I. Kerley, Sandia National Laboratories, 
    Albuquerque, NM, Report SAND2003-3613 (2003).
**	Y. T. Lee and R. M. More, Phys. Fluids 27, 1273 (1984).
	 †	P. Sterne, Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-PROC-227242 (2006). 
	 ‡	W. F. Huebner et al., Los Alamos National Laboratory, Los Alamos, NM, Report LA-6760-M (1977).
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Both PIMC and QMD methods have been used to self-consistently 
calculate intrinsic plasma properties under extreme conditions  

•	 PIMC is based on the density-matrix representation of a quantum 
many-body system* 
 
 
 
 
 

•	 QMD uses the density-functional theory** to simulate dense plasmas 
in two “flavors”: [Kohn–Sham molecular dynamics (KSMD, orbital 
based) and orbital-free molecular dynamics (OFMD†)]
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	*	D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).
**W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
	 †	F. Lambert, J. Clérouin, and G. Zérah, Phys. Rev. E 73, 016403 (2006).
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A wide range of DT plasma conditions has been investigated 
previously by PIMC and QMD methods
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Significant differences have been identified for warm dense deuterium when 
FPEOS,* lQMD,** and FPOT† are compared with traditional models

12

	*	FPEOS: first-principles equation of state; 
   S. X. Hu et al., Phys. Rev. B 84, 224109 (2011). 
**	lQMD: QMD-based thermal conductivity;  
   S. X. Hu et al., Phys. Rev. E 89, 043105 (2014).
	 †	FPOT: first-principles opacity table; 
	   S. X. Hu et al., Phys. Rev. E 90, 033111 (2014).
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A wide range of plasma conditions of various ablators* 
are investigated by PIMC and QMD methods

14

This talk will focus on CH properties, 
although Be and Si have been used 
for multilayer target designs.** 

Y. H. Ding and S. X. Hu, 
GO8.00010, this conference.

B. Henderson et al., JO8.00003, this conference.

	 *	S. X. Hu et al., Phys. Rev. E 92, 043104 (2015);
   S. X. Hu et al., Phys. Plasmas 23, 042704 (2016);
   S. X. Hu et al., Phys. Rev. B 94, 094109 (2016);
   S. X. Hu et al., Phys. Rev. E 95, 043210 (2017);
   Y. H. Ding and S. X. Hu, Phys. Plasmas 24, 062702 (2017);
   S. X. Hu, Phys. Rev. Lett. 119, 065001 (2017);
   S. X. Hu et al., Phys. Rev. B 96, 144203 (2017).
**	V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).
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The calculated principal Hugoniot* of CH from FPEOS 
has been well compared with experiments

15

The Hugoniot temperature predicted by FPEOS is in better agreement with the experiment!

	*	S. X. Hu, T. R. Boehly, and L. A. Collins, Phys. Rev. E 89, 063104 (2014).
**	S. P. Marsh, ed. LASL Shock Hugoniot Data, Los Alamos Series on 
   Dynamic Material Properties (University of California Press, Berkeley, CA, 1980).
	 †	M. A. Barrios et al., Phys. Plasmas 17, 056307 (2010).
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Several different experimental observables show better 
agreement with FPEOS than SESAME EOS for CH

16

*		P. B. Radha et al., “Shock Velocity Measurements at the National 
  Ignition Facility,” to be submitted to Physical Review E.

See T. R. Boehly talk at this conference, JO8.00007, for FPEOS comparison 
with sound-speed and Grüneisen parameter measurements in shocked CH.
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QMD predicted larger thermal conductivity* and opacity** in warm dense 
CH plasmas when compared to the models used in our hydrocodes

17

	*	S. X. Hu et al., Phys. Plasmas 23, 042704 (2016).
**	S. X. Hu et al., Phys. Rev. B 96, 144203 (2017).
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The QMD-predicted carbon K-edge shifting in extremely dense and 
warm C* and CH** plasmas cannot be explained by plasma models 

18

	*	S. X. Hu, Phys. Rev. Lett. 119, 065001 (2017);
**S. X. Hu et al., Phys. Rev. B 96, 144203 (2017).
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The physics picture of x-ray-absorption K-edge shifting in extremely dense 
and warm plasmas are different from classical plasma models

19
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Our quantum-physics–based models can explain the unusual 
K-edge shifting in extremely dense and warm plasmas

•	 Single atom in a box (SAIAB)/single mixture in a box (SMIAB) model (putting a single 
atom or mixture into a cubic box of V = t/A, with the periodic boundary condition)

–– solving the Kohn–Sham equation to determine E1s 
 
 

–– using the average-atom model to gauge ionization GZH for (t, T)

–– calculating the Fermi surface:                                      for degenerate plasmas
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At very high densities, a factor of ~2 difference in CH opacity between QMD* 
and LANL’s ATOMIC** model is attributed to the different K-edge shifting

21
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	*	S. X. Hu et al., Phys. Rev. B 96, 144203 (2017). 
**	N. R. Shaffer et al., High Energy Density Phys. 23, 31 (2017).
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The effects of accurate intrinsic properties of DT and CH on ICF 
implosions have been studied through radiation–hydrodynamic 
simulations for 100-Gbar targets on OMEGA*

23

*	 S. P. Regan et al., YO7.00007, this conference.
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Differences in target performance are predicted between the first-principles–
based new models and the old plasma models for cryo DT targets on OMEGA

24
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The effects of accurate intrinsic properties of DT and CH 
on direct-drive NIF* designs have also been tested

25

Shock timing is affected by the FPEOS of the CH ablator.

*	NIF: National Ignition Facility

E = 1.5 MJ
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Significant variations in NIF target performance have been 
predicted using first-principles properties when compared  
to traditional plasma-model simulations

26

The lower ablation rate of CH could mean that we may need 
either more laser energy or thinner shells for ICF implosions.
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A factor of ~3 to 4 difference in ICF target gain is predicted using new 
first-principles properties versus old plasma-model simulations

27

High gain may be recovered by using the first-principles– 
based material properties to retune target designs.

Target 
performance DT+CH (SESAME/AOT/lLee–More) DT+CH (FPEOS/FPOT/lQMD)

GtRHn 0.807 g/cm2 0.654 g/cm2

GTiHn 22.8 keV 11.2 keV

GPHn 999 Gbar 342 Gbar

GtHpeak 602.9 g/cm3 322.7 g/cm3

Rhot spot 64.2 nm 87.6 nm
Chot spot 26.5 19.4

Yield 1.66 × 1019 4.26 × 1018

Gain 31.3 8.0
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Accurate intrinsic properties of plasmas under extreme conditions 
are essential for reliable inertial confinement fusion (ICF) target designs

•	First-principles methods have been used to self-consistently calculate 
intrinsic properties of DT and ablators under extreme conditions

•	 These ab initio results, which can significantly differ from the predictions 
of traditional plasma models in the warm-dense-matter (WDM) regime, 
compared well with experiments

•	 Hydro simulations using these first-principles properties of DT and 
ablators have shown a significant difference in predicting target 
performance when compared with traditional model simulations

28

Summary/Conclusions

Knowing material properties better would result in a more- 
reliable understanding and designing of ICF implosions.
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For silicon, our first-principles calculations predicted 
a much softer Hugoniot than traditional EOS models,* 
which seems consistent with preliminary experiments

30

	*	S. X. Hu et al., Phys. Rev. B 94, 094109 (2016).
**	B. Henderson et al., presented at the 20th Biennial Conference of the APS Topical Group on 
   Shock Compression of Condensed Matter, St. Louis, MO, 9–14 July 2017 (Abstract T6.00002).
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