Hugoniot Measurements of Silicon Shock Compressed to 21 Mbar

59th Annual Meeting of the **American Physical Society Division of Plasma Physics** Milwaukee, WI 23-27 October 2017

Summarv

Laser-driven shocks were used to measure the silicon Hugoniot to 21 Mbar (2.1 TPa)

- Silicon is of interest in high-energy-density (HED) physics, inertial confinement fusion (ICF) targets, geophysics, planetary science, and astrophysics
- First-principles calculations* predict "softer" behavior than older, widely used models
- Impedance matching was used to measure pressure and density in opaque silicon
- Our data indicates silicon is more compressible than predicted by SESAME 3810
- Results show limited agreement with density functional theory above 5 Mbar

E25547b

*S. X. Hu et al., Phys. Rev. B <u>94</u>, 094109 (2016).

Collaborators

T. R Boehly, S. X. Hu, D. N. Polsin, J. R. Rygg, and G. W. Collins

University of Rochester Laboratory for Laser Energetics

M. C. Gregor, D. E. Fratanduono, R. Kraus, J. H. Eggert, and P. M. Celliers

Lawrence Livermore National Laboratory

Motivation

Silicon is important to HED physics, such as planetary science and ICF capsules

- The high-pressure silicon equation of state (EOS) is crucial to understanding the dynamics of siliconrich planets (i.e., earth)
- Silicon is used in ICF capsules to reduce fuel preheat and laser-plasma instability (LPI) effects

Si EOS Models

Modern DFT calculations are significantly different from the standard SESAME

- The silicon SESAME EOS table was constructed based on a chemical picture of matter
- Below 1 Mbar, SESAME 3810 was constrained by Hugoniot data from 1997
- Above 1 Mbar, it was constructed so the Hugoniot was "similar" to germanium
- The first-principles predicted shock density is ~20% higher*

E25570a

SESAME 3810 DFT-based FPEOS Pavlovskii *et al.*** Goto *et al.*[†] Gust and Royce[‡]

94109 (2016). d State <u>9,</u> 2514 (1968). n. J. Appl. Phys. <u>21,</u> L369 (1982). opl. Phys. <u>42</u>, 1897 (1971).

^{*}S. X. Hu et al., Phys. Rev. B <u>94</u>, 094109 (2016).

^{**}M. N. Pavlovskii, Sov. Phys.-Solid State <u>9</u>, 2514 (1968).

[†]T. Goto, T. Sato, and Y. Syono, Jpn. J. Appl. Phys. <u>21</u>, L369 (1982).

[‡]W. H. Gust and E. B. Royce, J. Appl. Phys. <u>42</u>, 1897 (1971).

Target Design

EOS measurements of opaque samples (Si) use transit times for velocity, requiring sophisticated corrections to reduce errors*

• Instantaneous shock velocities in silicon are determined using a nonsteady wave correction*

VISAR: velocity interferometer system for any reflector ASBO: active shot breakout *D. E. Fratanduono et al., J. Appl. Phys. 116, 033517 (2014).

E23267h

Method

The impedance-matching technique determines the pressure and particle velocity in a sample relative to a known standard

*M. D. Knudson and M. P. Desjarlais, Phys. Rev. Lett. <u>103</u>, 225501 (2009).

Kochester

Method

When the shock crosses the interface, the standard will release to a P and u_p supported by the standard's Hugoniot

*M. D. Knudson and M. P. Desjarlais, Phys. Rev. Lett. <u>103</u>, 225501 (2009).

Method

The intersection of the standard's release isentrope and the sample's Rayleigh line determines the sample's P and up

Results indicate that the density functional theory more adequately describes silicon's behavior above 2 Mbar

*S. X. Hu et al., Phys. Rev. B 94, 094109 (2016).

Laser-driven shocks were used to measure the silicon Hugoniot to 21 Mbar (2.1 TPa)

- Silicon is of interest in high-energy-density (HED) physics, inertial confinement fusion (ICF) targets, geophysics, planetary science, and astrophysics
- First-principles calculations* predict "softer" behavior than older, widely used models
- Impedance matching was used to measure pressure and density in opaque silicon
- Our data indicates silicon is more compressible than predicted by SESAME 3810
- Results show limited agreement with density functional theory above 5 Mbar

E25547b

*S. X. Hu et al., Phys. Rev. B <u>94</u>, 094109 (2016).