Heat-Flux Measurements in Laser-Produced Plasmas Using Thomson **Scattering from Electron Plasma Waves**

R. J. Henchen University of Rochester Laboratory for Laser Energetics

American Physical Society Division of Plasma Physics Milwaukee, WI 23-27 October 2017

Thomson scattering from ion-acoustic waves (IAW's) and electron plasma waves (EPW's) were used to measure the heat flux in coronal plasmas

- Changes in Landau damping caused by heat flux were seen in the relative amplitudes of Thomson-scattering spectra from IAW's and EPW's
- Local plasma conditions obtained from Thomson scattering provide an independent measurement of the heat flux using the Spitzer–Härm (SH) thermal-transport model
- Heat-flux measurements indicate the SH model is not valid and nonlocal effects are present
- Fokker–Planck simulations recover values obtained from measuring changes in Thomson-scattering spectra from EPW's resulting from heat flux

E26699

Collaborators

V. N. Goncharov, D. Cao, J. Katz, and D. H. Froula

University of Rochester Laboratory for Laser Energetics

W. Rozmus

University of Alberta

M. Sherlock

Lawrence Livermore National Laboratory

Changes in the electron distribution function caused by heat flux affect the Thomson-scattering spectrum from EPW's

Thomson scattering was used to measure the heat flux, electron temperature, and electron density in coronal plasmas

- Thomson scattering (TS) provides local measurements of T_e , n_e , and qin a 50 × 50 × 50- μ m³ volume
- Probing five different locations provides values for ∇T_{e}
- $q_{\rm SH}$ was determined by measuring $T_{\rm e}$, $n_{\rm e}$, and $\nabla T_{\rm e}$

Thomson scattering provides two separate measurements of heat flux by probing plasma waves along the direction of the temperature gradient.

Thomson-scattering spectra obtained at five locations in the corona were used to measure the heat flux

ROCHESTER

E24098b

The scattering spectra are fit to determine the electron temperature and density

E26700

7

The electron temperature and density measurements are used to infer the heat flux

The relative amplitudes of the EPW scattering features were used to measure heat flux

9

$T_e = (1.05 \pm 0.03) \text{ keV}$ $n_e = (3.92 \pm 0.01) \times 10^{19} \text{ cm}^{-3}$

The two methods of measuring heat flux are not consistent

Measurements of the mean free path and temperature scale suggest that classic thermal transport (SH) is not valid

E26704

Heat-flux values from Fokker–Planck simulations* are obtained using measured plasma profiles

Heat-flux values from Fokker–Planck simulations* are obtained using measured plasma profiles (continued)

*M. Sherlock, J. P. Brodrick, and C. P. Ridgers, Phys. Plasmas 24, 082706 (2017).

Thomson scattering from ion-acoustic waves (IAW's) and electron plasma waves (EPW's) were used to measure the heat flux in coronal plasmas

- Changes in Landau damping caused by heat flux were seen in the relative amplitudes of Thomson-scattering spectra from IAW's and EPW's
- Local plasma conditions obtained from Thomson scattering provide an independent measurement of the heat flux using the Spitzer–Härm (SH) thermal-transport model
- Heat-flux measurements indicate the SH model is not valid and nonlocal effects are present
- Fokker–Planck simulations recover values obtained from measuring changes in Thomson-scattering spectra from EPW's resulting from heat flux

