

X. Gong

hP4

59th Annual Meeting of the **American Physical Society Division of Plasma Physics** Milwaukee, WI 23-27 October 2017

A solid hP4 phase of sodium has been observed at ~320 GPa

- Na has been previously observed to transform into an optically transparent phase at 200 GPa*
- The phase is predicted by simulation to be a structurally complex "electride" hP4 structure*
- Na was ramp compressed to ~320 GPa on the OMEGA EP Laser System and studied using *in-situ* x-ray diffraction
- The existence of the hP4 phase at ~320 GPa indicates that the rise of the melting temperature starting at 120 GPa continues even at higher pressures

*M. Marqués et al., Phys. Rev. B 83, 184106 (2011).

Collaborators

D. N. Polsin, J. R. Rygg, T. R. Boehly, L. Crandall, B. J. Henderson, S. X. Hu, M. Huff, R. Saha, and G. W. Collins

> University of Rochester Laboratory for Laser Energetics

R. Smith, J. H. Eggert, and A. E. Lazicki

Lawrence Livermore National Laboratory

M. McMahon

Department of Physics, University of Edinburgh

At high pressures, Na has a unique melting curve* that possesses a minimum at 120 GPa, then rises steeply

Diamond-anvil-cell (DAC) experiments* show that Na transforms into an optically transparent phase at 200 GPa

Diamond-anvil-cell (DAC) experiments* show that Na transforms into an optically transparent phase at 200 GPa

Diamond-anvil-cell (DAC) experiments* show that Na transforms into an optically transparent phase at 200 GPa

This phase is predicted* to be an "electride" hP4 structure, where conduction electrons are "trapped" in interstitial wells, producing an insulator

Electron localization function

hP4: a double-hexagonal close-packed (dhcp) structure squeezed along the c axis.

**VISAR: velocity interferometer system for any reflector

*J. R. Rygg et al., Rev. Sci. Instrum. 83, 113904 (2012).

ROCHESTER

*J. R. Rygg et al., Rev. Sci. Instrum. 83, 113904 (2012).

VISAR data are used to determine the velocity of the diamond free surface, which is back-propagated to determine the pressure in the Na sample

Raw diffraction data are scanned from image plates on five sides of the box and projected onto a φ –2 θ plane

The four brightest lines are tungsten bcc* diffraction signals, which are used for calibration

TC13850 *bcc: body centered cubic

The three weaker lines are sodium diffraction lines, consistent with hP4 structure

ROCHESTER

The three weaker lines are sodium diffraction lines, consistent with hP4 structure

Sodium has a solid phase at ~320 GPa, which is consistent with hP4 structure

The melting temperature rises at >120 GPa

A solid hP4 phase of sodium has been observed at ~320 GPa

- Na has been previously observed to transform into an optically transparent phase at 200 GPa*
- The phase is predicted by simulation to be a structurally complex "electride" hP4 structure*
- Na was ramp compressed to ~320 GPa on the OMEGA EP Laser System and studied using *in-situ* x-ray diffraction
- The existence of the hP4 phase at ~320 GPa indicates that the rise of the melting temperature starting at 120 GPa continues even at higher pressures

TC13838

*M. Marqués et al., Phys. Rev. B 83, 184106 (2011).