Upgraded Neutron Time-of-Flight Detectors for DT Implosions on OMEGA

Petal nTOF in TIM-6 line of sight

59th Annual Meeting of the American Physical Society Division of Plasma Physics Milwaukee, WI 23–27 October 2017

V.Y. Glebov University of Rochester Laboratory for Laser Energetics

Summary

Six detectors measure yield and ion temperature and are used to study 3-D effects in DT implosions on OMEGA

- Three new neutron time-of-flight (nTOF) detectors of different designs were recently added to the existing detectors on OMEGA
- Using one new nTOF detector it is possible to measure x-ray instrument response function (IRF), construct neutron IRF, and calculate ion temperature with the forward-fitting method
- The ion-temperature fitting parameters for the other detectors were adjusted to match the ion temperature of the forward-fitting detector

Collaborators

C. J. Forrest, J. P. Knauer, O. M. Mannion, S. P. Regan, T. C. Sangster, and C. Stoeckl

> University of Rochester Laboratory for Laser Energetics

> > M. Gatu Johnson

Plasma Science and Fusion Center Massachusetts Institute of Technology

The 3-D view of six DT nTOF detectors on OMEGA

*CVD: chemical vapor deposition **MCP: microchannel plate

Six nTOF detectors measure yield and ion temperature in DT implosions with yields larger than 10¹²

#	Name	Distance from TCC*	$ heta, oldsymbol{\phi}$	Detector
1	5.0-m CVD	5.0 m	79.30, 314.27	$10 \times 1 \text{ mm CVI}$
2	10.4-m PD040	10.4 m	38.42, 249.60	40 × 10 mm BC422Q PD04
3	12-m nTOF-N	12.4 m	87.86, 161.24	40 × 20 mm BC422Q PMT**1
4	Petal nTOF	13.0 m	116.57, 162.0	50 × 50 × 5 mm EJ-232Q PMT14
5	15.8-m nTOF	15.8 m	61.32, 47.64	40 × 10 mm BC422Q PMT14
6	15.9-m MCP nTOF	15.9 m	62.15, 205.626	MCP inside PMT

E26827

*TCC: target chamber center **PMT: photomultiplier tube

The Petal nTOF detector was designed to improve *T*_i measurements on OMEGA

- Measures DT and DD T_i in the same line of sight
- Takes in-situ x-ray IRF measurements
- Absolute *T*_i by forward-fitting
- High *T*_i precision and accuracy
- Neutron energy measurements (fiducial)

E26828

For the Petal nTOF detector, x-ray IRF was measured, neutron IRF was constructed, and T_i was inferred by the forward-fitting method*

*R. Hatarik et al., J. Appl. Phys. <u>118</u>, 184502 (2015).

The Petal-modified Gaussian m(t) fit parameters were adjusted to match the Petal forward-fitting analysis

E26830

4

The 10.4-m PD040 and 15.8-m nTOF fitting parameters were adjusted to match the Petal forward-fitting analysis

E26831

The 12-m nTOF-N and 15.9-m MCP nTOF fitting parameters were adjusted to match the Petal forward-fitting analysis

E26832

The impact of the target offset on T_i and position of the neutron peak was demonstrated on OMEGA

E26833 ROCHESTER

O. M. Mannion et al., CO8.0003, this conference.

Summary/Conclusions

Six detectors measure yield and ion temperature and are used to study 3-D effects in DT implosions on OMEGA

- Three new neutron time-of-flight (nTOF) detectors of different designs were recently added to the existing detectors on OMEGA
- Using one new nTOF detector it is possible to measure x-ray instrument response function (IRF), construct neutron IRF, and calculate ion temperature with the forward-fitting method
- The ion-temperature fitting parameters for the other detectors were adjusted to match the ion temperature of the forward-fitting detector

