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Flying focus provides unprecedented control over laser–plasma interactions

• Flying focus
 – decouples the diameter of the laser focus 
from the longitudinal focal range

 – decouples the velocity of the focus from  
the group velocity of light

• Experiments 
 – demonstrated the flying focus over 100×  
the Rayleigh length of the system

 – demonstrated control over the focal velocity 
from –0.2c to nearly 50c

• Flying focus could be the enabling technology  
of several laser–plasma devices
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Combining a diffractive lens with a broadband laser  
provides spatiotemporal control over the focus
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With 10 nm of bandwidth, the separation between focused colors  
is nearly 200× longer than the Rayleigh length of the system.
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The velocity of the focus can be controlled by varying  
the pulse duration of the laser (T) 
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The longer the pulse duration, the slower the focus will propagate.
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By changing the direction of the chirp (blue to red), the velocity  
of the focus can propagate at any velocity and in either direction
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Pulse durations less than 2L/c (negative chirp)  
produce superluminal focal velocities
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Setting the pulse duration equal to the focal range (L/c)  
results in an “infinitely” fast focal velocity (line focus)
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Experiments were performed on the Multi-Terawatt (MTW) laser  
to demonstrate the flying focus

9
x

 (
p

s)

S
p

ac
e

(a
rb

it
ra

ry
 u

n
it

s)

15

1.50.0

Image plane z (mm)

–1.5

0

x (ps)

–15

0

–15

150

x (ps)

–15 150

x (ps)

–1515
z = 0 mm z = 1.5 mmz = –1.5 mmStreak

camera

Grating pair

DzL = 4.5 mm

mr mgmb

Dm = –9.2 nm

T = 2L/c = 29.8 ps



E26389

The measurements provided space and time information that  
was reconstructed to generate the flying focus intensity profile
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The measurements agree well with analytic and Fresnel calculations
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 D. Turnbull et al., “Raman Amplification with a Flying Focus,” submitted to Physical Review Letters.

Injecting the seed behind the ionization wave will provide constant  
plasma conditions and intensity throughout the amplifier.

The flying focus could be the enabling technology for laser-plasma amplifiers*
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Injecting the seed behind the ionization wave will provide constant  
plasma conditions and intensity throughout the amplifier.

The flying focus could be the enabling technology for laser-plasma amplifiers*
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The flying focus provides significant advantages for a laser-plasma amplifier

• Constant longitudinal intensity: the seed laser 
observes a constant intensity over many millimeters 
(hundreds of times the optical Rayleigh length)

• Counter-propagating ionization wave: the pump 
beam will propagate through gas, eliminating 
spontaneous instabilities (SRS,* filamentation…)

• Plasma conditions: the plasma conditions observed 
by the seed will be constant and controllable
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Summary/Conclusions 

Flying focus provides unprecedented control over laser–plasma interactions

• Flying focus
 – decouples the diameter of the laser focus 
from the longitudinal focal range

 – decouples the velocity of the focus from  
the group velocity of light

• Experiments 
 – demonstrated the flying focus over 100×  
the Rayleigh length of the system

 – demonstrated control over the focal velocity 
from –0.2c to nearly 50c

• Flying focus could be the enabling technology  
of several laser–plasma devices





