Flying Focus: Spatiotemporal Control of Longitudinal Intensity

D. H. Froula **University of Rochester** Laboratory for Laser Energetics

59th Annual Meeting of the **American Physical Society Division of Plasma Physics** Milwaukee, WI 23-27 October 2017

Summary

Flying focus provides unprecedented control over laser-plasma interactions

- Flying focus
 - decouples the diameter of the laser focus from the longitudinal focal range
 - decouples the velocity of the focus from the group velocity of light
- Experiments
 - demonstrated the flying focus over 100× the Rayleigh length of the system
 - demonstrated control over the focal velocity from –0.2c to nearly 50c
- Flying focus could be the enabling technology of several laser-plasma devices

Collaborators

D. Turnbull, A. Davies, T. J. Kessler, D. Haberberger, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, J. Palastro, and J. L. Shaw

> University of Rochester Laboratory for Laser Energetics

Combining a diffractive lens with a broadband laser provides spatiotemporal control over the focus

With 10 nm of bandwidth, the separation between focused colors is nearly $200 \times$ longer than the Rayleigh length of the system.

The velocity of the focus can be controlled by varying the pulse duration of the laser (T)

ROCHESTER

UR 🔌

By changing the direction of the chirp (blue to red), the velocity of the focus can propagate at any velocity and in either direction

Pulse durations less than 2L/c (negative chirp) produce superluminal focal velocities

ROCHESTER

Setting the pulse duration equal to the focal range (L/c) results in an "infinitely" fast focal velocity (line focus)

ROCHESTER

UR

Experiments were performed on the Multi-Terawatt (MTW) laser to demonstrate the flying focus

RÖCHESTER

E26380

The measurements provided space and time information that was reconstructed to generate the flying focus intensity profile

The measurements agree well with analytic and Fresnel calculations

Pulse duration (ps)

The flying focus could be the enabling technology for laser-plasma amplifiers*

Injecting the seed behind the ionization wave will provide constant plasma conditions and intensity throughout the amplifier.

D. Turnbull et al., "Raman Amplification with a Flying Focus," submitted to Physical Review Letters.

The flying focus could be the enabling technology for laser-plasma amplifiers*

Injecting the seed behind the ionization wave will provide constant plasma conditions and intensity throughout the amplifier.

E263856

D. Turnbull et al., "Raman Amplification with a Flying Focus," submitted to Physical Review Letters.

The flying focus provides significant advantages for a laser-plasma amplifier

- Constant longitudinal intensity: the seed laser observes a constant intensity over many millimeters (hundreds of times the optical Rayleigh length)
- Counter-propagating ionization wave: the pump beam will propagate through gas, eliminating spontaneous instabilities (SRS,* filamentation...)
- Plasma conditions: the plasma conditions observed by the seed will be constant and controllable

D. Turnbull et al., "Raman Amplification with a Flying Focus," submitted to Physical Review Letters. *SRS: stimulated Raman scattering

Summary/Conclusions

Flying focus provides unprecedented control over laser-plasma interactions

- Flying focus
 - decouples the diameter of the laser focus from the longitudinal focal range
 - decouples the velocity of the focus from the group velocity of light
- Experiments
 - demonstrated the flying focus over 100×
 the Rayleigh length of the system
 - demonstrated control over the focal velocity from –0.2c to nearly 50c
- Flying focus could be the enabling technology of several laser-plasma devices

