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Neutron spectroscopy has been used to observe low-mode asymmetry
of the cold-fuel distribution from cryogenic DT implosions

• The neutron energy spectrum generated from cryogenic D–T direct-drive implosions 
in ICF* experiments is sensitive to low-mode cold-fuel distributions

• A 3-D neutron transport code (IRIS3D) is being used to interpret the measured neutron 
time-of-flight spectrum in cryogenic DT implosions

• The comparison of measurement and simulation indicates the presence of a dominant 
low mode (, = 1) in recent experiments
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Summary

* ICF: inertial confinement fusion
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The neutron energy spectrum encodes important information about implosion 
performance produced in cryogenic DT experiments
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Motivation

• Nuclear experimental quantities
 Yn: DT and DD 
 Ti: DT and DD 
 tR: elastically scattered neutrons
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Asymmetries in fuel distribution generate observable differences
in the neutron energy spectrum
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• Mean energy shifts caused by collective 
fluid motion

• Variation in cold-fuel distribution

Motivation

.D T He MeV n MeV3 5 144"+ +^ ^h h
. .D D He MeV n MeV0 8 2 453"+ +^ ^h h
. .T T He MeV n MeVto to0 3 5 2 0 9 44"+ +^ ^h h

 * O. M. Mannion, CO8.00003, this conference.
** Z. L. Mohamed, UO7.00010, this conference. 
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Several experimental parameters can induce low-mode variations
of the cold-fuel distribution in cryogenic implosions
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Beam mispointing also
imparts nonuniformity
on the fuel distribution.
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*K. S. Anderson et al., UO7.00003, this conference.
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The transport code IRIS3D post-processes the simulations
to generate synthetic time-of-flight spectra

7

• Density, temperature, and velocity profiles 
are post-processed with IRIS3D code

• Neutrons are transported out of the hot-neutron–
producing region and tallied along a specified line 
of sight (13.4 m)

• The simulated spectrum allows for an accurate 
determination of backgrounds in the measured 
signal to infer the tR and Ti variations along 
multiple lines of sight
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A high-dynamic-range neutron time-of-flight (nTOF)* spectrum is used
to infer parameters that represent the fuel conditions at peak compression
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• A best fit to the experimental data is achieved 
using the known neutron contributions

• The areal density is inferred in specific 
energy regions to map out variations 
of the cold-fuel distribution (3.5 to 4.0 MeV)

• The neutron loses energy as a function 
of the elastic scatter angle off 
the cold-fuel distribution 
 

 *  C. J. Forrest et al., Rev. Sci. Instrum. 87, 11D814 (2016).
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Significant differences from the expected shape of the down-scattered 
spectrum have been measured for some recent implosions on OMEGA
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Experimental data IRIS3D

The synthetic data from IRIS3D have not 
been corrected with an IRF*

* IRF: impulse response function
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The comparison of measurement and simulation indicates the presence of
a dominant low mode (, = 1) in a recent experiment with a large target offset 
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* TCC: target chamber center
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Additional lines of sight can be used to reconstruct the areal density
of the cold-fuel distribution with the low-energy portion of the spectrum
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• The black squares represent the 
locations of the nTOF line of sight

• A single line of sight using the low-
energy region can infer , = 1 mode

• A second line of sight is under 
construction on OMEGA at ~100° 
from the existing line of sight

* LLE Review Quarterly Report 150, 100 (2017).
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Neutron spectroscopy has been used to observe low-mode asymmetry
of the cold-fuel distribution from cryogenic DT implosions

• The neutron energy spectrum generated from cryogenic D–T direct-drive implosions 
in ICF* experiments is sensitive to low-mode cold-fuel distributions

• A 3-D neutron transport code (IRIS3D) is being used to interpret the measured neutron 
time-of-flight spectrum in cryogenic DT implosions

• The comparison of measurement and simulation indicates the presence of a dominant 
low mode (, = 1) in recent experiments
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* ICF: inertial confinement fusion

Summary/Conclusions 


