Wave-Based Cross-Beam Energy Transfer Simulations with Laser Speckle and Polarization Smoothing

R. K. Follett **University of Rochester** Laboratory for Laser Energetics

(normalized laser field)

59th Annual Meeting of the **American Physical Society Division of Plasma Physics** Milwaukee, WI 23-27 October 2017

Summary

A 3-D wave-based model has been developed to understand the physics of cross-beam energy transfer (CBET) in an inhomogeneous plasma

- Detailed CBET calculations are used to study ray-based CBET models that are implemented in hydrodynamics codes
- The comparisons highlight the accuracy of ray-based models
- Discrepancies between the models are found related to beam speckle and polarization smoothing when the speckle length is longer than the interaction region

E26190a

Collaborators

D. H. Edgell, D. H. Froula, V. N. Goncharov, I. V. Igumenshchev, J. G. Shaw, and J. F. Myatt

> University of Rochester Laboratory for Laser Energetics

J.W. Bates, K. Obenschain, and J. Weaver

Naval Research Laboratory

Ray- and wave-based CBET models give the same result in simple interaction geometries (plane-wave beams, no caustics)

All of the approximations made in the ray model are satisfied in this configuration.

Speckled beams can transfer more energy than plane-wave beams with the same average intensity

ROCHESTER

E26195a

The CBET gain is sensitive to beam speckle for gains greater than ${\sim}1$ and relative beam angles of less than ${\sim}30^{\circ}$

 $\textbf{Gain} \equiv \textbf{log} \left(\frac{\textbf{Seed energy out}}{\textbf{Seed energy in}} \right)$

CBET gain versus pump intensity for various relative beam angles

ROCHESTER

E26196a

A good approximation to the CBET between speckled beams can be obtained by using the linearity of Maxwell's equations

ROCHESTER

E26197a

The ray-based speckled field calculations show good agreement with the wave-based results

CBET gain versus pump intensity for various relative beam angles

Speckled beams result in a modest decrease in laser absorption in full-scale two-beam LPSE simulations at ICF-relevant plasma conditions

E26199a

e|*E*|/mc∞₀

Polarization smoothing is accounted for in ray-based CBET models by multiplying the gain coefficient by a factor of $(1 + \cos^2\theta)/4^*$

• The factor of $(1 + \cos^2\theta)/4$ comes from assuming that the interacting beams have random relative polarizations with uncorrelated speckle patterns

$$\langle | \boldsymbol{\phi} |^2 \rangle_{PS} = \frac{1}{4} (1 + \cos \theta)$$

E26200a

 $\left| \boldsymbol{\phi} \right|_{\scriptscriptstyle \parallel}^2 \boldsymbol{\theta}$

*P. Michel et al., Phys. Plasmas 20, 056308 (2013).

The factor of $(1 + \cos^2\theta)/4$ used to account for the modification of the CBET gain between beams with polarization smoothing is valid only when the speckle length is shorter than the interaction region*

Speckle length = $2\pi f_{\pm}^2 \lambda_0$

*P. Michel et al., Phys. Plasmas 20, 056308 (2013).

Summary/Conclusions

A 3-D wave-based model has been developed to understand the physics of cross-beam energy transfer (CBET) in an inhomogeneous plasma

- Detailed CBET calculations are used to study ray-based CBET models that are implemented in hydrodynamics codes
- The comparisons highlight the accuracy of ray-based models
- Discrepancies between the models are found related to beam speckle and polarization smoothing when the speckle length is longer than the interaction region

E26190a

