Polarization Rotation from Cross-Beam Energy Transfer During Direct-Drive OMEGA Implosions

During picket

During drive

D. H. Edgell **University of Rochester** Laboratory for Laser Energetics

59th Annual Meeting of the **American Physical Society Division of Plasma Physics** Milwaukee, WI 23-27 October 2017

Summary

Polarization change in the lasers from cross-beam energy transfer (CBET) has been observed in direct-drive implosions on OMEGA

- The CBET beamlets diagnostic uses a Wollaston prism to decompose a scattered-light beamlet from each OMEGA beam into two orthogonal polarization components
- During the picket when CBET is predicted to be small, the observed beamlet polarizations for linearly polarized beams are similar to calculations without CBET
- During the main drive when CBET is predicted to be large, the observed beamlet polarizations are different than during the picket

Collaborators

R. K. Follett, J. Katz, J. F. Myatt, J. G. Shaw, D. Turnbull, and D. H. Froula

> University of Rochester Laboratory for Laser Energetics

Cross-beam energy transfer modeling is required to match the experimental observables (scattered light, implosion velocity, and bang time)

The CBET beamlets diagnostic records scattered-light intensities each from a unique light path and from a different OMEGA beam

Each spot is the end point of a beamlet originating from a specific location of the beam profile

E24259d

Each spot is the end point of a beamlet originating from a specific location of the beam profile

E24260d

Each spot is the end point of a beamlet originating from a specific location of the beam profile

E24261d

Each spot is the endpoint of a beamlet originating from a specific location of the beam profile

60 identical beams sample CBET along many unique paths in a beam.

E24262d

CBET affects each beamlet differently because the unique path of each beamlet crosses the 60 OMEGA beams differently

E17999d

The CBET beamlets diagnostic has two separate time windows and isolates orthogonal polarizations at each time

Gated optical imager gate shape

DPR's* installed

*DPR: distributed polarization rotator

With linearly polarized beams, the beamlet images show the polarization of the scattered light

Recorded images (during picket)

Simulated images (without CBET)

With linearly polarized beams, the beamlet images show the polarization of the scattered light

Recorded images (during picket)

Simulated images (without CBET)

Note that the Beam 13 beamlet is predominately *p* polarized in both simulated and recorded images.

When CBET is strong during the drive pulse, the polarization of the B13 beamlet is more s polarized

Recorded images (during picket)

Recorded images (during drive)

Polarization changes of the order of a few tens of degrees have been observed in preliminary investigations

Summary/Conclusions

Polarization rotation in the lasers from cross-beam energy transfer (CBET) has been observed in direct-drive implosions on OMEGA

- The CBET beamlets diagnostic uses a Wollaston prism to decompose a scattered-light beamlet from each OMEGA beam into two orthogonal polarization components
- During the picket when CBET is predicted to be small, the observed beamlet polarizations for linearly polarized beams are similar to calculations without CBET
- During the main drive when CBET is predicted to be large, the observed beamlet polarizations are different than during the picket

16