Density-Functional-Theory–Based Equation-of-State Table of Beryllium for Inertial Confinement Fusion Applications

Y. H. Ding and S. X. Hu **University of Rochester** Laboratory for Laser Energetics

59th Annual Meeting of the **American Physical Society Division of Plasma Physics** Milwaukee, WI 23-27 October 2017

Summarv

An accurate equation-of-state (EOS) table of beryllium has been built from first-principles calculations

- Based on density-functional-theory (DFT) calculations, we have established a wide-range beryllium EOS table of density $\rho = 0.001$ to $\rho = 500$ g/cm³ and temperature T = 2000 to 10^8 K
- The first-principles equation-of-state (FPEOS) table is in good agreement with the widely used SESAME EOS table (SESAME 2023), but shows a 10% difference in maximum compressibility from Purgatorio
- By implementing the FPEOS table into our hydrocodes, we show that the FPEOS simulation predicts a higher neutron yield (~15%) compared to the simulation using the SESAME 2023 simulations

TC13416a

Combining orbital-based DFT and orbital-free molecular dynamics (OFMD), we have investigated wide-ranged EOS tables of beryllium

- Previous FPEOS studies on D₂, CH, and Si show a significant difference from SESAME 2023
- As an inertial confinement fusion (ICF) ablator, accurate properties of beryllium under such extreme conditions are essential for designs
- Theoretical EOS models may not provide an accurate EOS in the warm-dense-matter (WDM) regime, where both strongly coupled $(\Gamma > 1)$ and degeneracy effects $(\theta < 1)$ are important*
- Quantum molecular dynamics (QMD),* based on DFT, has proven to work well for EOS calculations**

TC13417a

*L. Collins et al., Phys. Rev. E 52, 6202 (1995). **L. X. Benedict et al., Phys. Rev. B 89, 224109 (2014).

The FPEOS of beryllium has been calculated for densities and temperatures from ρ = 0.001 g/cm³ to ρ = 500 g/cm³ and T = 2000 K to 10⁸ K

Y. H. Ding and S. X. Hu, Phys. Plasmas 24, 062702 (2017).

The calculated principal shock Hugoniot of beryllium from FPEOS has been compared with other theoretical models and experiments

The FPEOS Hugoniot pressure of beryllium is in good agreement (within 10%) with the widely used SESAME model (SESAME 2023) in the low-compression-ratio region; the pressure differences can be up to 30% in the high-compression region.

TC13419a

The off-Hugoniot equation of state is compared between FPEOS and SESAME at certain densities

ROCHESTER

TC13422a

In the WDM regime the difference between FPEOS and SESAME 2023 can reach a maximum of 20%

TC13421a

The implication of Be FPEOS for ICF designs has been examined

For DT, two gas simulations used the same FPEOS table and the first-principles opacity table.

The FPEOS simulation predicted ~15% higher neutron yield than the SESAME simulation

This small difference between FPEOS and SESAME in hydro simulations is consistent with their good agreement with the Hugoniot.

TC13425a

Summary/Conclusions

An accurate equation-of-state (EOS) table of beryllium has been built from first-principles calculations

- Based on density-functional-theory (DFT) calculations, we have established a wide-range beryllium EOS table of density $\rho = 0.001$ to $\rho = 500$ g/cm³ and temperature T = 2000 to 10^8 K
- The first-principles equation-of-state (FPEOS) table is in good agreement with the widely used SESAME EOS table (SESAME 2023), but shows a 10% difference in maximum compressibility from Purgatorio
- By implementing the FPEOS table into our hydrocodes, we show that the FPEOS simulation predicts a higher neutron yield (~15%) compared to the simulation using the SESAME 2023 simulations

TC13416a

