Understanding Hard X-Ray Emission in Direct-Drive Implosions

University of Rochester Laboratory for Laser Energetics

Milwaukee, WI 23-27 October 2017

Summarv

The fast-electron production from two-plasmon decay (TPD) depends on the gain and on the thermal electron distribution above 10 keV

- Simulations of hard x-ray (HXR) emission from TPD electrons in the hydrocode LILAC and in LPSE* show earlier emission than in experiments, which depends on the rise time of the drive pulse
- LPSE simulations show that low thermal-electron temperatures can reduce the fast-electron production
- Simulations with the Fokker–Planck–Vlasov code, *FPI*,** confirm that the population of ~10-keV thermal electrons fills up more slowly than the fastest drive-pulse rise times

TC13879

*J. F. Myatt et al., Phys. Plasmas 24, 056308 (2017). **J. P. Matte et al., Phys. Rev. Lett. 53, 1461 (1984).

Collaborators

R. K. Follett, C. Stoeckl, and W. Seka

University of Rochester Laboratory for Laser Energetics

J. P. Matte

INRS

The source of fast electrons is based on the measured **HXR** emission from intensity-sweep experiments

- The HXR emission depends on the threshold parameter: $\eta = I_{14}$ (at $n_c/4$)* $L(\mu m)/[233T (keV)]^{\dagger}$
- The source function was designed to follow the same dependence as the HXR emission
- The source energy is given by $E_s = F_s \star S(\eta)$, where F_s is adjusted to give the measured HXR total emission energy

TC12479b

experimental points

[†]A. Simon et al., Phys. Fluids <u>26</u>, 3107 (1983).

The amount of early computed HXR emission depends on the drive pulse rise time

- The differences in early measured emission could come from hydrodynamic uncertainty (<20% lower threshold parameter)
- That the differences slowly vanish during the drive pulse suggests some time-dependent relaxation effect, such as the Maxwellization of high-energy electrons

TC13880

3	- - -	0.3	c
2	wer (10 ⁶ V	0.2	al emissio 'y units)
1	Emitted po	0.1	Experiment (arbitra
0	_	0.0	_

The early emission from *LILAC* is supported by *LPSE** simulations for the energy fraction into electrons >50 keV

- LPSE (laser-plasma simulation environment) is a 3-D laser-plasma interaction code
- The LPSE simulations were carried out with a Maxwellian thermal-electron distribution function

ROCHESTER

TC13881

25

20 power 15 aser 10

5

*J. F. Myatt et al., Physics of Plasmas 24, 056308 (2017).

Simulations with LPSE* imply that electrons with energy >10 keV are needed to generate TPD fast electrons

- LPSE simulations were carried out with a Maxwellian distribution
- The threshold parameter

•
$$\eta = I_{14} (\text{at } n_c/4) * L(\mu m) / [233]$$

is kept constant by varying the laser intensity from 1 \times 10¹⁴ to 5 \times 10¹⁴ W/cm²

TC13882

8*7 (keV)]

*J. F. Myatt et al., Physics of Plasmas 24, 056308 (2017).

FPI* simulations show that, for the fast-rising pulse, the distribution function needs 400 ps to equilibrate

- FPI is a Fokker–Planck code that simulates laser absorption and nonlocal thermal electron transport
- The simulations used linearly rising laser pulses of 200 ps and 400 ps followed by a constant pulse at the peak intensity of 9×10^{14} W/cm²

The decrease in the electron population >10 keV may not be the only cause for the lack of early emission in the fast-rising pulse cases.

TC13924

*J. P. Matte et al., Phys. Rev. Lett. 53, 1461 (1984).

Summary/Conclusions

The fast-electron production from two-plasmon decay (TPD) depends on the gain and on the thermal electron distribution above 10 keV

- Simulations of hard x-ray (HXR) emission from TPD electrons in the hydrocode LILAC and in LPSE* show earlier emission than in experiments, which depends on the rise time of the drive pulse
- LPSE simulations show that low thermal-electron temperatures can reduce the fast-electron production
- Simulations with the Fokker–Planck–Vlasov code, *FPI*,** confirm that the population of ~10-keV thermal electrons fills up more slowly than the fastest drive-pulse rise times

TC13879

*J. F. Myatt et al., Phys. Plasmas 24, 056308 (2017). **J. P. Matte et al., Phys. Rev. Lett. 53, 1461 (1984).

A threshold reduction factor was obtained from the ratio of the measured to the computed HXR emissions

- This factor is obtained such that the value of the computed threshold parameter gives the same HXR emission level as that measured
- The correction factor can be expressed as an exponential in time

 $R_F = \exp[t/2 \times 10^{-9} - 1.0]$

• The exponential fit is done from the start of the HXR emission to the peak

Applying the reduction factor resulted in closer agreement between simulated and measured HXR emission

ROCHESTER

TC13884

