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The fast-electron production from two-plasmon decay (TPD) depends  
on the gain and on the thermal electron distribution above 10 keV

• Simulations of hard x-ray (HXR) emission from TPD electrons in the 
hydrocode LILAC and in LPSE* show earlier emission than in experiments, 
which depends on the rise time of the drive pulse

• LPSE simulations show that low thermal-electron temperatures can reduce 
the fast-electron production

• Simulations with the Fokker–Planck–Vlasov code, FPI,** confirm that the 
population of ~10-keV thermal electrons fills up more slowly than the 
fastest drive-pulse rise times
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Summary

  *J. F. Myatt et al., Phys. Plasmas 24, 056308 (2017).
**J. P. Matte et al., Phys. Rev. Lett. 53, 1461 (1984).
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The source of fast electrons is based on the measured  
HXR emission from intensity-sweep experiments
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• The HXR emission depends on the threshold parameter: h = I14 (at nc /4)*L(nm)/[233*T (keV)]†

• The source function was designed to follow the same dependence as the HXR emission

• The source energy is given by Es = Fs * S(h), where Fs is adjusted to give the measured  
HXR total emission energy
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†A. Simon et al., Phys. Fluids 26, 3107 (1983).
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The amount of early computed HXR emission  
depends on the drive pulse rise time

• The differences in early measured emission could come from 
hydrodynamic uncertainty (<20% lower threshold parameter)

• That the differences slowly vanish during the drive pulse suggests 
some time-dependent relaxation effect, such as the Maxwellization 
of high-energy electrons
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The early emission from LILAC is supported by LPSE* simulations  
for the energy fraction into electrons >50 keV  

• LPSE (laser-plasma simulation environment) is a 3-D 
laser–plasma interaction code

• The LPSE simulations were carried out with a Maxwellian  
thermal-electron distribution function
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*J. F. Myatt et al., Physics of Plasmas 24, 056308 (2017).



TC13882

Simulations with LPSE* imply that electrons with energy >10 keV  
are needed to generate TPD fast electrons
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• LPSE simulations were carried out  
with a Maxwellian distribution

• The threshold parameter  
 
 
 
is kept constant by varying the laser 
intensity from 1 × 1014 to 5 × 1014 W/cm2

*J. F. Myatt et al., Physics of Plasmas 24, 056308 (2017).

• h = I14 (at nc/4)*L(nm)/[233*T (keV)]
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FPI* simulations show that, for the fast-rising pulse,  
the distribution function needs 400 ps to equilibrate

• FPI is a Fokker–Planck code that simulates laser absorption and nonlocal 
thermal electron transport

• The simulations used linearly rising laser pulses of 200 ps and 400 ps followed 
by a constant pulse at the peak intensity of 9 × 1014 W/cm2
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The decrease in the electron population >10 keV may not be the only
cause for the lack of early emission in the fast-rising pulse cases.

Distribution function at 200 ps Ratio of computed distribution to Maxwellian
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*J. P. Matte et al., Phys. Rev. Lett. 53, 1461 (1984).
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Summary/Conclusions

  *J. F. Myatt et al., Phys. Plasmas 24, 056308 (2017).
**J. P. Matte et al., Phys. Rev. Lett. 53, 1461 (1984).

The fast-electron production from two-plasmon decay (TPD) depends  
on the gain and on the thermal electron distribution above 10 keV

• Simulations of hard x-ray (HXR) emission from TPD electrons in the 
hydrocode LILAC and in LPSE* show earlier emission than in experiments, 
which depends on the rise time of the drive pulse

• LPSE simulations show that low thermal-electron temperatures can reduce 
the fast-electron production

• Simulations with the Fokker–Planck–Vlasov code, FPI,** confirm that the 
population of ~10-keV thermal electrons fills up more slowly than the 
fastest drive-pulse rise times
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A threshold reduction factor was obtained from the ratio  
of the measured to the computed HXR emissions

• This factor is obtained such that the 
value of the computed threshold 
parameter gives the same HXR emission 
level as that measured

• The correction factor can be expressed 
as an exponential in time

• The exponential fit is done from the start 
of the HXR emission to the peak
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Applying the reduction factor resulted in closer agreement between  
simulated and measured HXR emission
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