
Conduction-Zone Measurements Using X-Ray Self-Emission Images

A. K. Davis
University of Rochester
Laboratory for Laser Energetics

1

N
o

rm
al

iz
ed

 in
te

n
si

ty
(a

rb
it

ra
ry

 u
n

it
s)

1.0

0.1

1023

1021

1022

n
i (

cm
–3

)

2.5

2.0

1.5

1.0

0.5

0.0

T e
 (

ke
V

)
Shot 80650, t = 0.56 ns 

350 400 450

Radius (nm) Radius (nm) Radius (nm)

500 550 350 400 450 500 550 350 400 450 500 550

Electron temperature Ion densityX-ray self-emission

NL + CBET
Flux limit = 0.06

Experiment

Critical
density

Ablation
front

59th Annual Meeting of the 
American Physical Society
Division of Plasma Physics 

Milwaukee, WI 
23–27 October 2017



E25707

Summary

X-ray self-emission measurements were used to identify 
discrepancies in modeling conduction-zone plasma conditions

•	 Different models disagree on the early-time density and temperature 
profiles in the conduction zone, which affects predictions of the laser 
imprint, scattered light, and shock timing

•	 X-ray self-emission intensity profiles show good agreement between 
measurements and simulations for low-intensity experiments, but not 
for high-intensity experiments

•	 A method was developed to use self-emission profiles to determine the 
temperature and density profiles in the conduction zone of the plasma
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This diagnostic will measure plasma parameters where 
neither optical diagnostics nor x-ray backlighting can probe. 
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Experiments measured the x-ray self-emission to obtain the spatially 
and temporally resolved emission spectrum for three laser configurations
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Shot 80647
E25084a

Self-emission images taken at different times show 
the expansion of the coronal plasma
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*D. T. Michel et al., High Power Laser Science and Engineering 3, e19 (2015).
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Synthetic x-ray self-emission images are calculated from simulated density 
and temperature profiles to facilitate comparison with experiments
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*D. T. Michel et al., Rev. Sci. Instrum. 83, 10E530 (2012).
**eDs , Ds = 1 nm
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Comparisons of measured and simulated self-emission intensity 
profiles show good agreement for a low-intensity square laser pulse 
but not for a high-intensity pulse
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This could indicate a higher temperature near the ablation front or a density profile 
that is expanding in the experiment more rapidly than in the simulation. 
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To investigate the source of the disagreement, simulations using different 
thermal transport models were compared with measurements
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To determine the density and temperature profiles, the ratio between 
the emissivity measured over the three spectral bands can be used
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With the measured emissivity and temperature, the opacity 
can be calculated and the density determined using opacity tables*
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*Astrophysical Opacity Tables: W. F. Huebner et al., Los Alamos  	
National Laboratory, Los Alamos, NM, Report LA-6760-M (1977).

Density

Future work will apply this analysis to measured images to determine 
the density and temperature profiles in the conduction zone.
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Summary/Conclusions

X-ray self-emission measurements were used to identify 
discrepancies in modeling conduction-zone plasma conditions

•	 Different models disagree on the early-time density and temperature 
profiles in the conduction zone, which affects predictions of the laser 
imprint, scattered light, and shock timing

•	 X-ray self-emission intensity profiles show good agreement between 
measurements and simulations for low-intensity experiments, but not 
for high-intensity experiments

•	 A method was developed to use self-emission profiles to determine the 
temperature and density profiles in the conduction zone of the plasma

This diagnostic will measure plasma parameters where 
neither optical diagnostics nor x-ray backlighting can probe. 
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Image intensities on a single camera will be calibrated relative 
to each other to obtain an absolute temperature measurement
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This is possible because the gain droop across each strip is consistent 
between shots when the incident intensity and image locations are conserved. 
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Absolute-timing calibrations within 20 ps for the three framing 
cameras were obtained by measuring the rise of the laser pulse 
and the ablation-front trajectory with all three cameras*
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SFC: Sydor framing camera
*D. T. Michel et al., High Power Laser Science and Engineering 3, e19 (2015).

**15-ps shift from absolute-timing calibration

More-precise relative timing was obtained by cross-calibrating the absolute timing 
between the cameras using the trajectory of an imploding shell as a reference.
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