Equation-of-State Measurements of Precompressed CO$_2$
Precompressed CO$_2$ was shocked to ~1 TPa and is less compressible than predicted by current models

- Ice giants (Uranus, Neptune) and their moons (Triton) contain CO$_2$, which may contribute to planetary dynamics
- CO$_2$ was precompressed in diamond-anvil cells to a liquid at ~1.16 GPa and shock compressed to 980 GPa
- Shock velocity and self-emission were measured to provide Hugoniot, reflectivity, and temperature data
- Shock-compressed CO$_2$ exhibits stiffer behavior than predicted by density functional theory (DFT)
Collaborators

J. R. Rygg, G. W. Collins, and T. R. Boehly
University of Rochester
Laboratory for Laser Energetics

A. Jenei, D. E. Fratanduono, M. C. Gregor, M. Millot, and J. H. Eggert
Lawrence Livermore National Laboratory

D. Spaulding
University of California, Davis
Diamond-anvil cells precompressed CO$_2$ that was shock compressed with the OMEGA laser

- CO$_2$ samples were precompressed to 1.2 GPa in diamond-anvil cells and driven with laser shocks to 980 GPa
- Impedance matching was performed to the quartz standard
- Shock velocity, emission, and reflectance were measured using VISAR and SOP

Experimental Setup

VISAR: velocity interferometer system for any reflector
SOP: streaked optical pyrometer
Simultaneous VISAR and pyrometer data provided a temporal profile of the shock velocity and temperature.
Simultaneous VISAR and pyrometer data provided a temporal profile of the shock velocity and temperature.
The impedance-matching method relies on the shock and release behaviors of a known standard.

Rankine–Hugoniot equations

\[\rho \frac{\rho_0}{U_s} = \frac{U_s}{(U_s - U_p)} \]

\[P - P_0 = \rho_0 U_s U_p \]

\[E - E_0 = \frac{1}{2}(P + P_0)\left(\frac{1}{\rho_0} - \frac{1}{\rho}\right) \]
The impedance-matching method relies on the shock and release behaviors of a known standard.

Rankine–Hugoniot equations:

\[
\frac{\rho}{\rho_0} = \frac{U_s}{(U_s - U_p)}
\]

\[
P - P_0 = \rho_0 U_s U_p
\]

\[
E - E_0 = \frac{1}{2}(P + P_0)\left(\frac{1}{\rho_0} - \frac{1}{\rho}\right)
\]
Equation-of-state data are obtained from the impedance-matching technique

\[U_s^Q = a + b U_p^Q - c U_p^Q e^{-d U_p^Q} \]
\[\alpha = 2.3 - 0.037 U_p^Q \]

M. P. Desjarlais, M. D. Knudson, and K. R. Cochrane, J. Appl. Phys. 122, 035903 (2017);
Equation-of-state data are obtained from the impedance-matching technique

\[
P_s - P_H = \frac{\Gamma}{V} (E_s - E_H)
\]

\[
U_p = U_{p1} + \int_{p_1}^p \frac{V dP_s}{C_s}
\]

- Mie–Grüneisen linear reference model
- Release isentrope (known standard)

M. D. Knudson and M. P. Desjarlais, Phys. Rev. B 88, 184107 (2013);
Equation-of-state data are obtained from the impedance-matching technique.
Particle velocities were inferred from impedance matching to obtain $U_S(U_P)$.

The $U_s - U_p$ relation for CO$_2$ exhibits linear behavior when accounting for precompression.

\[U_s = C_0 + sU_p + a \rho_0^{0.5} \]
\[C_0 = 13.30 \]
\[s = 1.28 \]
\[a = -11.98 \]
\[\chi^2_R = 6.16 \]
In the pressure–compression plane, the effect of precompression is readily apparent.
In the pressure–compression plane, the effect of precompression is readily apparent with the fit $U_s = C_0 + sU_p + a\rho_0^{0.5}$.
The current model for shocked CO$_2$ (Boates) predicts a softer behavior than our data indicates.
The Boates’ model reasonably predicts our observed temperatures; the effect of precompression is less pronounced.

Summary/Conclusions

Precompressed CO$_2$ was shocked to \sim1 TPa and is less compressible than predicted by current models

- Ice giants (Uranus, Neptune) and their moons (Triton) contain CO$_2$, which may contribute to planetary dynamics
- CO$_2$ was precompressed in diamond-anvil cells to a liquid at \sim1.16 GPa and shock compressed to 980 GPa
- Shock velocity and self-emission were measured to provide Hugoniot, reflectivity, and temperature data
- Shock-compressed CO$_2$ exhibits stiffer behavior than predicted by density functional theory (DFT)