Equation-of-State Measurements of Precompressed CO₂

L. Crandall **University of Rochester** Laboratory for Laser Energetics

59th Annual Meeting of the American Physical Society Division of Plasma Physics Milwaukee, WI 23-27 October 2017

Summary

Precompressed CO₂ was shocked to ~1 TPa and is less compressible than predicted by current models

- Ice giants (Uranus, Neptune) and their moons (Triton) contain CO₂, which may contribute to planetary dynamics
- CO₂ was precompressed in diamond-anvil cells to a liquid at ~1.16 GPa and shock compressed to 980 GPa
- Shock velocity and self-emission were measured to provide Hugoniot, reflectivity, and temperature data
- Shock-compressed CO₂ exhibits stiffer behavior than predicted by density functional theory (DFT)

Collaborators

J. R. Rygg, G. W. Collins, and T. R. Boehly

University of Rochester Laboratory for Laser Energetics

A. Jenei, D. E. Fratanduono, M. C. Gregor, M. Millot, and J. H. Eggert

Lawrence Livermore National Laboratory

D. Spaulding University of California, Davis

Experimental Setup

Diamond-anvil cells precompressed CO₂ that was shock compressed with the OMEGA laser

- CO₂ samples were precompressed to 1.2 GPa in diamondanvil cells and driven with laser shocks to 980 GPa
- Impedance matching was performed to the quartz standard
- Shock velocity, emission, and reflectance were measured using VISAR and SOP

E26762

*VISAR: velocity interferometer system for any reflector **SOP: streaked optical pyrometer

Simultaneous VISAR and pyrometer data provided a temporal profile of the shock velocity and temperature

ROCHESTER

E26721a

Simultaneous VISAR and pyrometer data provided a temporal profile of the shock velocity and temperature

The impedance-matching method relies on the shock and release behaviors of a known standard

E11211b

The impedance-matching method relies on the shock and release behaviors of a known standard

E11211c

Equation-of-state data are obtained from the impedance-matching technique

M. P. Desjarlais, M. D. Knudson, and K. R. Cochrane, J. Appl. Phys. <u>122</u>, 035903 (2017); S. Brygoo et al., J. Appl. Phys. <u>118</u>, 195901 (2015).

E26722a

$U_s^Q = a + bU_p^Q - cU_p^Q e^{-dU_p^Q}$ $+ \alpha(\rho_0 - 2.65)$ $\alpha = 2.3 - 0.037 U_p^Q$

Equation-of-state data are obtained from the impedance-matching technique

M. D. Knudson and M. P. Desjarlais, Phys. Rev. B <u>88</u>, 184107 (2013); M. P. Desjarlais, M. D. Knudson, and K. R. Cochrane, J. Appl. Phys. <u>122</u>, 035903 (2017).

E26722b

Mie-Grüneisen linear reference model $P_{s} - P_{H} = \frac{\Gamma}{V} (E_{s} - E_{H})$ $U_{p} = U_{p1} + \int_{p1}^{p} \frac{VdP_{s}}{C_{s}}$

Equation-of-state data are obtained from the impedance-matching technique

Particle velocities were inferred from impedance matching to obtain $U_s(U_p)$

*S. Root et al., Phys. Rev. B 87, 224102 (2013).

The $U_s - U_p$ relation for CO₂ exhibits linear behavior when accounting for precompression

In the pressure-compression plane, the effect of precompression is readily apparent

MELIORA Kochester

In the pressure–compression plane, the effect of precompression is readily apparent with the fit $U_s = C_0 + sU_p + a\rho_0^{-0.5}$

ROCHESTER

The current model for shocked CO_2 (Boates) predicts a softer behavior than our data indicates

B. Boates et al., J. Chem. Phys. <u>134</u>, 064504 (2011).

The Boates' model reasonably predicts our observed temperatures; the effect of precompression is less pronounced

E26726

B. Boates et al., J. Chem. Phys. 134, 064504 (2011).

Summary/Conclusions

Precompressed CO₂ was shocked to ~1 TPa and is less compressible than predicted by current models

- Ice giants (Uranus, Neptune) and their moons (Triton) contain CO₂, which may contribute to planetary dynamics
- CO₂ was precompressed in diamond-anvil cells to a liquid at ~1.16 GPa and shock compressed to 980 GPa
- Shock velocity and self-emission were measured to provide Hugoniot, reflectivity, and temperature data
- Shock-compressed CO₂ exhibits stiffer behavior than predicted by density functional theory (DFT)

