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Wavelength detuning for cross-beam energy transfer (CBET) mitigation is  
the cornerstone of ignition-scale designs for direct drive on the NIF*

•	 Wavelength detuning is effective for both polar direct drive (PDD) and 
spherical direct drive (SDD)

•	 Using wavelength detuning, we are able to achieve a high-adiabat, 
alpha-burning PDD design that is predicted to generate a yield  
over 300 kJ, as well as an igniting design with gain ~30

•	 Both designs have low in-flight aspect ratios (IFAR’s), indicating they 
are robust with respect to imprint

•	 An SDD alpha-burning design has been developed that makes use  
of the equatorial NIF beam ports, generating a yield of 160 kJ
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Summary

*	NIF: National Ignition Facility
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CBET reduces the laser drive  
by as much as 30%
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•	 The CBET effect increases scattered light 
through the stimulated Brillouin scattering 
(SBS) of outgoing rays, removing energy from 
incoming, high-energy rays

•	 Detuning the laser beam wavelengths by !Dm 
shifts the CBET resonance volume sufficiently 
to mitigate CBET*

•	 Laser wavelength detuning has been used for 
power balance in indirect-drive experiments; for 
direct drive it is used for CBET mitigation

•	 Detuning can introduce north–south 
asymmetries in PDD and SDD

	*	J. A. Marozas et al., presented at the 44th Annual Anomalous Absorption Conference, Estes Park, CO, 8–13 June 2014. 
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The models in DRACO reproduce the implosion morphology  
and equatorial drive in NIF detuning experiments*

•	 A !2.3-Å (UV) wavelength separation produced an observable change in the implosion shape
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*J. A. Marozas et al., “First Observation of Cross-Beam Energy Transfer Mitigation for Direct-Drive Inertial Confinement 		
		Fusion Implosions Using Wavelength Detuning at the National Ignition Facility,” submitted to Physical Review Letters; 
		J. A. Marozas, TI2.00002, this conference.
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The balanced tricolor wavelength-detuning configuration was found to achieve 
the best performance and implosion symmetry for PDD 
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•	 Balanced tricolor detuning removes the north–south asymmetry while maintaining good coupling
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A new PDD alpha-burning design has been developed that is  
within NIF damage limits but requires additional facility capabilities

•	 This design uses Dm = !12 Å (UV), increasing the absorption fraction to 72%

•	 As an alpha-burning design, it has no ignition cliff and is less sensitive to drive and target imperfections
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Neutron yield 327 kJ

Absorption fraction 72%

Vimp 392 km/s

IFAR 20

Minimum end-of-pulse a 4.8

Convergence ratio 28

Peak GtRH 1.4 g/cm2 

Ablation pressure (Mbar) 115
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An ignition design has also been developed  
with a gain of 27, IFAR of 23, and a ~ 3.
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Reduced detuning bandwidth Dm may be accomodated  
by reduced shell mass

•	 The implosion speed for Dm = !6 Å (UV) may be restored to ~400 km/s 
through a reduction in shell mass, increasing the IFAR by ~10%
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PDD drive uniformity is optimized using beam repointing,
cone power multipliers, and tailored spot shapes
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PDD drive uniformity is optimized using beam repointing,
cone power multipliers, and tailored spot shapes
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The NIF SDD configuration’s superior illumination uniformity  
was further improved by optimized beam pointings

11

SDD
i (°)

In
it

ia
l n

o
rm

al
iz

ed
 in

te
n

si
ty

 
45 90 135

Radial SDD pointing

1.08

1.06

1.04

1.02

1.00

0.98

•	 The equatorial illumination is closer to normal, raising the overall absorption efficiency from ~70% to ~80%
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*T. J. B. Collins et al., Phys. Plasmas 19, 056308 (2012).

SDD

•	 The equatorial illumination is closer to normal, raising the overall absorption efficiency from ~70% to ~80%

•	 Telios* was used to optimize initial beam pointings, reducing nonuniformity by over 10× uniformity

•	 The detuning configuration was determined through a second optimization process with a fully evolved 
plasma, further reducing the nonuniformity by 2×

The NIF SDD configuration’s superior illumination uniformity  
was further improved by optimized beam pointings
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A new alpha-burning design has been developed for NIF SDD

•	 The hot-spot volume is 3.5× greater than the PDD alpha-burning design and 
the convergence ratio correspondingly smaller, reducing the sensitivity to laser 
mispointing and making the hot-spot conditions easier to diagnose
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Neutron yield 5.6 × 1016 

160 kJ

Absorption fraction 83%

Vimp 361 km/s

IFAR 22

Adiabat 4.3

Convergence ratio 19

Peak GtRH 0.9 g/cm2 

Ablation pressure (Mbar) 90

•	 A CBET multiplier of 1 was used

•	 An increased CBET multiplier can be offset by increased drive power
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Summary/Conclusions 

Wavelength detuning for cross-beam energy transfer (CBET) mitigation is  
the cornerstone of ignition-scale designs for direct drive on the NIF

•	 Wavelength detuning is effective for both polar direct drive (PDD) and 
spherical direct drive (SDD)

•	 Using wavelength detuning, we are able to achieve a high-adiabat, 
alpha-burning PDD design that is predicted to generate a yield  
over 300 kJ, as well as an igniting design with gain ~30

•	 Both designs have low in-flight aspect ratios (IFAR’s), indicating they 
are robust with respect to imprint

•	 An SDD alpha-burning design has been developed that makes use  
of the equatorial NIF beam ports, generating a yield of 160 kJ
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The NIF SDD configuration’s superior illumination uniformity was  
further improved by optimized beam pointings
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SDD

•	 Telios* was used to optimize initial beam pointings, reducing nonuniformity by over 10× uniformity

•	 The equatorial illumination is closer to normal, raising the overall absorption efficiency from ~70% to ~80%

•	 The detuning configuration was determined through a second optimization process with a fully evolved 
plasma, further reducing the nonuniformity by 2×
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Many detuning configurations were explored for the PDD  
alpha-burning and ignition designs
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In PDD, NIF beams are repointed toward  
the equator to compensate for the missing equatorial beams
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•	 Repointing beams gives greater path lengths and 
standoff distances through lower densities:  
n = nc × cos2 iinc

•	 Reduced equatorial drive may be compensated with

–– tailored spot shapes including spot-masking 
apodization (SMA)

–– increased equatorial power

–– reduced equatorial shell mass (“shimming”)

•	 Minimum energy required for ignition:

			*	TPD: two-plasmon decay
**	SRS: stimulated Raman scattering
		†	NLET: nonlocal electron transport
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Wavelength detuning affects the region over which the  
CBET resonance occurs

•	 The CBET attenuation is ( )d dsIPCBET pol pump?x g h , where the 
resonance function P is given by ( ) –1P v vabl abl

2 2 2
+h h h h= ^ ^h h9 C and 

– – k v c k/pump probe a a a:h ~ ~= ^ ^h h8 B
•	 The resonance function peaks at 1+h

•	 Without detuning cosM1 1abl+. ch i  , where iabl is the angle between  
kabl and r

•	 Increasing D~ changes the values of  kabl = kpump – kprobe that resonate, 
changing the resonance region

•	 Red-shifting probe rays move resonance to lower Mach numbers, where probe 
rays may be blocked or have reduced intensity

•	 Blue-shifting probe rays shift the resonance outward, where there  
is reduced overlap

•	 The larger the wavelength shift, the longer the mitigation duration

•	 Wavelength shifting introduces north–south asymmetries
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A new PDD ignition design has been developed  
that is within NIF damage limits
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Energy 1.8 MJ

Gain 27

Absorption fraction 72%

Vimp 398 km/s

IFAR 23

Minimum end-of-pulse a 2.8

Convergence ratio 28

Peak GtRH 1.7 g/cm2 

Ablation pressure (Mbar) 111

•	 This design also uses Dm = !12 Å (UV)
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