Advances in Modeling Direct-Drive Ignition-Scale Designs for the National Ignition Facility

Laboratory for Laser Energetics

59th Annual Meeting of the **American Physical Society Division of Plasma Physics** Milwaukee, WI 23-27 October 2017

Wavelength detuning for cross-beam energy transfer (CBET) mitigation is the cornerstone of ignition-scale designs for direct drive on the NIF*

- Wavelength detuning is effective for both polar direct drive (PDD) and spherical direct drive (SDD)
- Using wavelength detuning, we are able to achieve a high-adiabat, alpha-burning PDD design that is predicted to generate a yield over 300 kJ, as well as an igniting design with gain ~30
- Both designs have low in-flight aspect ratios (IFAR's), indicating they are robust with respect to imprint
- An SDD alpha-burning design has been developed that makes use of the equatorial NIF beam ports, generating a yield of 160 kJ

*NIF: National Ignition Facility

Collaborators

J. A. Marozas, D. Cao, J. A. Delettrez, P. W. McKenty, P. B. Radha, and S. Skupsky

> University of Rochester Laboratory for Laser Energetics

> > G. Moses

University of Wisconsin

CBET reduces the laser drive by as much as 30%

- The CBET effect increases scattered light through the stimulated Brillouin scattering (SBS) of outgoing rays, removing energy from incoming, high-energy rays
- Detuning the laser beam wavelengths by $\pm \Delta \lambda$ shifts the CBET resonance volume sufficiently to mitigate CBET*
- Laser wavelength detuning has been used for power balance in indirect-drive experiments; for direct drive it is used for CBET mitigation
- Detuning can introduce north-south asymmetries in PDD and SDD

TC12247a

Pump beam

CBET energy exchange

The models in DRACO reproduce the implosion morphology and equatorial drive in NIF detuning experiments*

• A ±2.3-Å (UV) wavelength separation produced an observable change in the implosion shape

*J. A. Marozas et al., "First Observation of Cross-Beam Energy Transfer Mitigation for Direct-Drive Inertial Confinement Fusion Implosions Using Wavelength Detuning at the National Ignition Facility," submitted to Physical Review Letters; J. A. Marozas, TI2.00002, this conference.

The balanced tricolor wavelength-detuning configuration was found to achieve the best performance and implosion symmetry for PDD

A new PDD alpha-burning design has been developed that is within NIF damage limits but requires additional facility capabilities

- This design uses $\Delta \lambda = \pm 12$ Å (UV), increasing the absorption fraction to 72%
- As an alpha-burning design, it has no ignition cliff and is less sensitive to drive and target imperfections

TC13707 Kochester

eld	327 kJ
action	72%
	392 km/s
	20
-pulse α	4.8
ratio	28
$\left \right\rangle$	1.4 g/cm ²
re (Mbar)	115

Reduced detuning bandwidth $\Delta \lambda$ may be accomodated by reduced shell mass

• The implosion speed for $\Delta \lambda = \pm 6$ Å (UV) may be restored to ~400 km/s through a reduction in shell mass, increasing the IFAR by ~10%

PDD drive uniformity is optimized using beam repointing, cone power multipliers, and tailored spot shapes

TC13795a

PDD drive uniformity is optimized using beam repointing, cone power multipliers, and tailored spot shapes

Radial PDD pointing

The NIF SDD configuration's superior illumination uniformity was further improved by optimized beam pointings

• The equatorial illumination is closer to normal, raising the overall absorption efficiency from ~70% to ~80%

TC13795c

Radial SDD pointing

The NIF SDD configuration's superior illumination uniformity was further improved by optimized beam pointings

- The equatorial illumination is closer to normal, raising the overall absorption efficiency from ~70% to ~80%
- Telios* was used to optimize initial beam pointings, reducing nonuniformity by over 10× uniformity
- The detuning configuration was determined through a second optimization process with a fully evolved plasma, further reducing the nonuniformity by $2\times$

TC13795d

*T. J. B. Collins et al., Phys. Plasmas 19, 056308 (2012).

Radial SDD pointing

A new alpha-burning design has been developed for NIF SDD

 The hot-spot volume is 3.5× greater than the PDD alpha-burning design and the convergence ratio correspondingly smaller, reducing the sensitivity to laser mispointing and making the hot-spot conditions easier to diagnose Bang time, 9.8 ns

ρ T_i (keV) (g/cm³) 300 100 1.8 MJ Power (TW) 166 200 z (*m*m) 111 0 5 57 100 3 2 -100 0 5 0 -100 0 100 Time (ns) 39 μ m CH 2000 E_{CBET} (PW/cm³) ELaser <u>174 μm</u> DT (PW/cm³) 1000 79.6 27.6 (m7) 1338 Lem 0 53.4 19.1 Ν 10.5 27.1 -1000 2.0 0.9 • A -2000 -1500 0 1500 $x (\mu m)$

CBET multiplier of 1 was used

10

• An increased CBET multiplier can be offset by increased drive power

Summary/Conclusions

Wavelength detuning for cross-beam energy transfer (CBET) mitigation is the cornerstone of ignition-scale designs for direct drive on the NIF

- Wavelength detuning is effective for both polar direct drive (PDD) and spherical direct drive (SDD)
- Using wavelength detuning, we are able to achieve a high-adiabat, alpha-burning PDD design that is predicted to generate a yield over 300 kJ, as well as an igniting design with gain ~30
- Both designs have low in-flight aspect ratios (IFAR's), indicating they are robust with respect to imprint
- An SDD alpha-burning design has been developed that makes use of the equatorial NIF beam ports, generating a yield of 160 kJ

14

The NIF SDD configuration's superior illumination uniformity was further improved by optimized beam pointings

- plasma, further reducing the nonuniformity by $2\times$

T. J. B. Collins et al., Phys. Plasmas 19, 056308 (2012).

Many detuning configurations were explored for the PDD alpha-burning and ignition designs

ROCHESTER

TC13705

In PDD, NIF beams are repointed toward the equator to compensate for the missing equatorial beams

- Repointing beams gives greater path lengths and standoff distances through lower densities: $n = n_{\rm c} \times \cos^2 \theta_{\rm inc}$
- Reduced equatorial drive may be compensated with
 - tailored spot shapes including spot-masking apodization (SMA)
 - increased equatorial power
 - reduced equatorial shell mass ("shimming")
- Minimum energy required for ignition:

Elevated by TPD*, **SRS****?

Determined by P_{abl} The peak P_{abl} and shell mass, related to IFAR

 $E_{\min} \propto \alpha^{1.88} V_{\min}^{-5.89} P_{abl}^{-0.77}$

determined by power limits, CBET, NLET,[†] and θ_{inc}

*TPD: two-plasmon decay ** SRS: stimulated Raman scattering [†]NLET: nonlocal electron transport

Wavelength detuning affects the region over which the CBET resonance occurs

- The CBET attenuation is $d\tau_{CBET} \propto \zeta_{pol} P(\eta) I_{pump} ds$, where the resonance function P is given by $P(\eta) = \eta v_{abl} / [(\eta v_{abl})^2 + (1 \eta^2)^2]$ and $\eta = [(\omega_{pump} \omega_{probe}) k_a \cdot v] / (c_a k_a)$
- The resonance function peaks at $|\eta|$ ~ 1
- Without detuning $\eta \approx 1 \Leftrightarrow M\cos\theta_{abl} \approx 1$, where θ_{abl} is the angle between k_{abl} and r
- Increasing $\Delta \omega$ changes the values of $k_{abl} = k_{pump} k_{probe}$ that resonate, changing the resonance region
- Red-shifting probe rays move resonance to lower Mach numbers, where probe rays may be blocked or have reduced intensity
- Blue-shifting probe rays shift the resonance outward, where there is reduced overlap
- The larger the wavelength shift, the longer the mitigation duration
- Wavelength shifting introduces north-south asymmetries

C 0

-1

-10

A new PDD ignition design has been developed that is within NIF damage limits

• This design also uses $\Delta \lambda = \pm 12 \text{ Å} (UV)$

TC13708

	1.8 MJ
	27
oction	72%
	398 km/s
	23
pulse α	2.8
ratio	28
\rangle	1.7 g/cm ²
e (Mbar)	111