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The neutron-averaged observables can differ from the hot-spot  
volume-averaged quantities; the differences although small for low modes  
are more pronounced for mid-mode asymmetries

• The asymmetries are divided into low and mid modes by comparison 
of the mode wavelength with the hot-spot radius

• Low modes introduce nonradial motion, whereas mid modes  
involve cooling by thermal losses

• The energy distribution at stagnation is similar for both asymmetry 
types; however, the fusion reaction distribution is different

• A general expression is found relating the pressure degradation  
to the residual shell energy and the flow within the hot spot  
(i.e., the total residual energy) 
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Summary

* A. Bose et al., Phys. Plasmas 24, 102704 (2017).
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The radiation–hydrodynamic code DEC2D* is used to simulate  
the deceleration phase of implosions

4

Simulation Technique

* K. M. Woo et al., Bull. Am. Phys. Soc. 59, 354 (2014);  
A. Bose et al., Phys. Plasmas 22, 072702 (2015).

† Nonlocal + cross-beam energy transfer model:  
I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010).
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The observables for cryogenic implosions on OMEGA* can  
be reproduced using a combination of low and mid modes**
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EL 26.18 kJ Experiment 2-D simulation

Yield 5.3 # 1013 (!5%) 5.3 # 1013

P (Gbar) 56 (!7) 56

Ti (keV) 3.6 (!0.3) 3.7

Rhs (nm) 22 (!1) 22

x (ps) 66 (!10) 54

tR (g/cm2) 0.196 (!0.018) 0.194

Motivation

• For indirect-drive implosions on the 
NIF, low modes are considered to be  
the main cause of degradation†

 * S. P. Regan et al., Phys. Rev. Lett. 117, 025001 (2016); 117, 059903(E) (2016).
 ** A. Bose et al., Phys. Rev. E 94, 011201(R) (2016).
 † J. D. Lindl, Phys. Plasmas 2, 3933 (1995).

NIF: National Ignition Facility
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For low-mode asymmetries the bubbles are hot and sustain fusion  
reactions, while for mid modes they are cooled by thermal losses

• Low mode (mRT > Rh)

 – bubbles are hot and sustain fusion 
 – hot spot is isobaric (approximately)

 – nonradial flow motion in the shocked  
shell and hot spot

• Mid mode (mRT < Rh)

 – bubbles are cold and do not produce fusion
 – hot spot is not isobaric dP ~ Mach2

 – radially inward and outward motion
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For implosions with asymmetries, the neutron-averaged and the volume-
averaged quantities are different, but the differences are less  
for low modes and more pronounced for mid modes
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volume for mid modes.
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The energy distribution in different regions of an implosion  
is similar for low and mid modes
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A general expression is found relating the pressure degradation  
to the total residual energy and the flow within the hot spot

• Adiabatic compression: 
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Summary/Conclusions 

TC13891 * A. Bose et al., Phys. Plasmas 24, 102704 (2017).

The neutron-averaged observables can differ from the hot-spot  
volume-averaged quantities; the differences although small for low modes  
are more pronounced for mid-mode asymmetries

• The asymmetries are divided into low and mid modes by comparison 
of the mode wavelength with the hot-spot radius

• Low modes introduce nonradial motion, whereas mid modes  
involve cooling by thermal losses

• The energy distribution at stagnation is similar for both asymmetry 
types; however, the fusion reaction distribution is different

• A general expression is found relating the pressure degradation  
to the residual shell energy and the flow within the hot spot  
(i.e., the total residual energy) 


