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Summary

The effects of perturbations on direct-drive DT cryogenic implosions 
are diagnosed with monochromatic x-ray backlighting

•	 A crystal imager* is used for short pulse (20 ps), monochromatic x-ray 
backlighting** (1.865 keV) of 60-beam OMEGA DT cryogenic implosions

•	 Low-mode nonuniformities have been studied† close to stagnation
	 in experiments with pre-imposed shell-thickness variations

•	 The effects of localized perturbations like the target stalk have been 
observed with both mass-equivalent CH and DT cryogenic targets

•	 The level of mixing of plastic ablator with the DT ice has been inferred
	 at in-flight aspect ratios (IFAR’s) ~ 20 and adiabats from 2.5 to 4.0
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All three sources of perturbations contribute to the 
performance degradation observed in the experiments.

*C. Stoeckl et al., Rev. Sci. Instrum. 85, 11E501 (2014).
**R. Epstein et al., TO5.00005, this conference.
†I. V. Igumenshchev, CI3.00002, this conference (invited).
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Outline

•	 Motivation

•	 Experimental setup

•	 Low modes

•	 Imprint and mix

•	 Localized perturbations

4



TC10248u

The expected target performance is determined
by the laser pulse shape and the target dimensions

•	 Adiabat a = P/PFermi

•	 vimp = Implosion velocity

•	 EL = Laser energy

•	 IFAR = shell radius/shell thickness
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Simulations indicate that both short- and long-wavelength 
perturbations limit the target performance
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Image from NNSA framework document
*R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015);
A. Bose et al., Phys. Rev. Lett. E 94, 011201(R) (2016).

**S. P. Regan et al., Phys. Rev. Lett. 117, 025001 (2016).
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The x-ray or neutron images of the hot spot do not reflect 
the shape of the dense shell

7

The goal of monochromatic backlighting is to radiograph the compressed shell close to peak compression.

Sources
	 •	 20-nm offset
	 •	 Beam overlap	
	 •	 10% imbalance
	 •	 10-nm-rms mispointing
	 •	 5-ps-rms mistiming

Peak neutron production t = 2.57 ns

rms: root mean square
*I. V. Igumenshchev, CI3.00002, this conference (invited); I. V. Igumenshchev et al., Phys. Plasmas 23, 052702 (2016).

0

100

200

t
(g/cm3)

0

2

1

3

Ti
(keV)

Max

Min

Max

Min

ASTER* 3-D
simulations

D
is

ta
n

ce
 (
n

m
)

D
is

ta
n

ce
 (
n

m
)

Distance (nm)

–25

0

25

–25

0

25

–25–50 0 25 50

Distance (nm)

–25–50 0 25 50

NeutronsX ray

17%



E25721

The nonuniformities in the target evolve significantly 
in the 100 ps before peak neutron production
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Outline

•	 Motivation

•	 Experimental setup

•	 Low modes

•	 Imprint and mix

•	 Localized perturbations
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Monochromatic backlit images of DT cryo implosions are recorded 
with a shaped Bragg crystal-imaging system
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•	 The backlighter foil is not in the focus of the imaging system, so the 
backlighter uniformity does not depend on the laser-intensity distribution

•	 A collimator blocks the line of sight (LOS) to the backlighter,  
minimizing the background from the short-pulse laser 

•	 A direct LOS block shields the detector from background produced  
by the implosion target 
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*R. Epstein et al., TO5.00005, this conference.

Better spatial resolution and a higher brightness of the backlighter 
will improve the performance of the radiography setup*

•	 25 kJ low-adiabat pulses

•	 20-ps exposure, 20-ps backlighter

•	 ~200-eV blackbody equivalent 
backlighter brightness
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Three key innovations were required to make it possible to field 
a crystal-imaging system on cryogenic shots

•	 An aspherically shaped substrate was designed* to reduce the optical 
aberration of the imager at the relative large angle of incidence of 6.2°

•	 A fast target-insertion system* positions
	 the backlighter target within ~100 ms after
	 the cryo shroud has been removed

•	 An ultrastable optoelectronic trigger system with
	 a jitter of ~1.5-ps rms triggers the 40-ps exposure
	 time framing-camera detector
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*C. Stoeckl et al., Rev. Sci. Instrum. 85, 11E501 (2014).
**HTS: hardware timing system
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High-quality backlit images of the compressed DT shell were taken at CR ~7
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XRFC: x-ray framing camera
*C. Stoeckl et al., Rev. Sci. Instrum. 20, 056317 (2013).

The intensity profile of the backlighter must be removed to infer the absorption of the shell.*
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Outline

•	 Motivation

•	 Experimental setup

•	 Low modes

•	 Imprint and mix

•	 Localized perturbations
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The influence of low-mode nonuniformities was studied
using targets with shell-thickness variations

•	 Shell-thickness nonuniformity
	 ~0.1-nm rms

•	 Ice-thickness nonuniformity
	 11-nm rms

•	 Shell-thickness nonuniformity
	 2- to 4-nm peak to peak

•	 Ice-thickness nonuniformity
	 ~2-nm rms

15

Fiducial glue spot
~30 nm diam

Not to scale
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Low-mode structure is seen in the radiograph at a CR of 7 
for a uniform shell-thickness target

•	 Exposure time of 40 ps, ~100 ps before bang

•	 DT(60 nm) CH(12 nm), 888-nm diam, offset < 10 nm

•	 a = 2.5, IFAR ~10, YOC = 20%, tR/clean = 78%

16

YOC: yield over clean
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Both radius and magnitude of peak absorption show a variation 
as a function of azimuthal angle comparable to the simulations
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•	 An , = 1 of ~5 nm can be introduced by the choice of image center

•	 , = 1 with an amplitude of ~10 nm on the radius of peak absorption

•	 All low-mode effects accounted for in the simulation; no stalk
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The influence of low-mode nonuniformities was studied
using targets with shell-thickness variations

•	 Shell-thickness nonuniformity
	 ~0.1-nm rms

•	 Ice-thickness nonuniformity
	 11-nm rms

•	 Shell-thickness nonuniformity
	 2- to 4-nm peak to peak

•	 Ice-thickness nonuniformity
	 ~2-nm rms

18

Fiducial glue spot
~30 nm diam

Not to scale
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The radiograph from a shell with 4-nm wall thickness variation 
shows a low-mode structure for a CR ~ 10
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•	 Exposure time of 40 ps, horizontal 4 nm D, ~50 ps before bang

•	 DT(60 nm) CH(11 nm) 960-nm diam, offset < 10 nm

•	 a ~ 2, IFAR ~ 15; YOC = 8%, tR/clean = 41%
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Both radius and magnitude of peak absorption show a variation 
as a function of the azimuthal angle

20

•	 An , = 1 of ~5 nm can be introduced by the choice of image center

•	 , = 1 with an amplitude of ~10 nm on the peak absorption

•	 , = 2 with an amplitude of ~7 nm on the hot spot
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Post-processed DRACO* 2-D simulations** show similar
features as the experimental data

21

*P. B. Radha et al., Phys. Plasmas 12, 032702 (2005).
**R. Epstein et al., TO5.00005, this conference.
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Outline

•	 Motivation

•	 Experimental setup

•	 Low modes

•	 Imprint and mix

•	 Localized perturbations
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Core x-ray emission indicates that carbon from the ablator 
mixes into the core at peak compression*

•	 Radiography was used to study early-time mix with a = 2.5 to 4 
and IFAR = 17 to 20 at convergence ratios of 4 to 7

•	 Some shots had Germanium doped in the shell**

23

*T. C. Sangster et al., Phys. Plasmas 20, 056317 (2013).
**S. P. Regan et al., TO5.00004, this conference.
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Simulations assuming the mixing of carbon into the DT shell 
can reproduce the measured absorption
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•	 Exposure time of 200 ps, CR = 4

•	 DT(60 nm) CH(8 nm), 860-nm diam, offset ~25 nm

•	 a ~ 2.5, IFAR ~ 17; YOC = 7%, tR/clean = 78%

The depth of the mixing can 
be inferred by separating 
the DT ice into layers in the 
LILAC simulations
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A trend for mixing caused by imprint as a function of adiabat 
can be inferred from the experimental data
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SCI-XFRC (Ge doped)
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Spect3D 0.20% mix at 2.83 ns

–200 –150 –100 –50 0

SCI-XFRC
Spect3D at 3.07 ns

0

50

60

70

Radius (nm)

70535

a ~ 2.5
IFAR = 17
vimp = 2.8 × 107 m/s
CR ~ 4

–200 –150 –100 –50 0
50

70

90

110

130

150

Radius (nm)

80543

a ~ 2.0
IFAR = 20
vimp = 3.6 × 107 m/s
CR ~ 5

–200 –150 –100 –50 0
60

80

100

120

Radius (nm)

75372

a ~ 4.0
IFAR = 20
vimp = 3.1 × 107 m/s
CR ~ 7S

ig
n

al
 (

ar
b

it
ra

ry
 u

n
it

s)

SCI-XFRC 3.4 ns
Spect3D no mix 3.35 ns
Spect3D 0.20% C 5 layer 3.35 ns



E25673

Post-processed highly resolved DRACO simulations
show behavior similar to the experiment
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•	 Simulations include perturbations up to modes of , = 300

•	 Low-mode perturbations are included: pointing, timing, energy

•	 DT(45 nm) CH(11 nm), 860-nm diam

•	 a ~ 2.5, IFAR > 25
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Outline

•	 Motivation

•	 Experimental setup

•	 Low modes

•	 Imprint and mix

•	 Localized perturbations
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•	 The radius of the 50% rise on the absorption feature is evaluated 
by taking lineouts from the center of the image
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A 20-nm amplitude stalk feature is seen in backlit images 
of a mass-equivalent CH target at a CR = 2.5
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A 10-nm amplitude stalk feature is visible in one low-adiabat (~2.5) 
cryogenic DT implosion at a CR of 7
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A comparable stalk effect is also visible in 2-D DRACO simulations 
of a similar target configuration
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Open questions

Quantifying the impact of laser and target imperfections
on the implosion performance is an active area of research

•	 Radiography can be used to study several different effects

–	target placement can be evaluated using pre-imposed target offsets

–	changing the size of the glue spot will help to quantify stalk effects

–	smoothing by spectral dispersion (SSD) on/off experiments will 
examine laser imprint

•	 The performance of the shaped crystal imaging system will be improved

–	higher-quality quartz crystals will be used to increase the resolution 
of the shaped crystal imager; ray tracing shows resolutions < 1 nm

–	prepulses and foam targets will be tested to increase the brightness 
of the Si backlighter
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Summary/Conclusions
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*C. Stoeckl et al., Rev. Sci. Instrum. 85, 11E501 (2014).
**R. Epstein et al., TO5.00005, this conference.
†I. V. Igumenshchev, CI3.00002, this conference (invited).

The effects of perturbations on direct-drive DT cryogenic implosions 
are diagnosed with monochromatic x-ray backlighting

•	 A crystal imager* is used for short pulse (20 ps), monochromatic x-ray 
backlighting** (1.865 keV) of 60-beam OMEGA DT cryogenic implosions

•	 Low-mode nonuniformities have been studied† close to stagnation
	 in experiments with pre-imposed shell-thickness variations

•	 The effects of localized perturbations like the target stalk have been 
observed with both mass-equivalent CH and DT cryogenic targets

•	 The level of mixing of plastic ablator with the DT ice has been inferred
	 at in-flight aspect ratios (IFAR’s) ~ 20 and adiabats from 2.5 to 4.0

All three sources of perturbations contribute to the 
performance degradation observed in the experiments.
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Experimental target performance is a strong function of adiabat and IFAR

•	 The ratio of the measured areal density tR and average hot-spot 
pressure GPhsH over the 1-D simulated values are used as a metric

	 for the performance of the implosion

•	 The hot-spot pressure can be inferred from the observable quantities: 
neutron yield, ion temperature, and neutron rate

33

*V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).
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The lineouts of the backlit images from the crystal imager 
must be corrected for the backlighter shape

34

•	 The backlighter is assumed to be uniform

•	 It is convolved with a Gaussian representing 
the geometric resolution of the imager 

•	 The width and amplitude of the backlighter 
is adjusted to match the signal
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ASTER 3-D simulations* show similar low-mode
features as the experimental data
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Both radius and magnitude of peak absorption show 
a small variation as a function of azimuthal angle
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•	 An , = 1 of ~5 nm can be introduced by the choice of image center

•	 , = 1 with an amplitude of ~10 nm on the radius of peak absorption
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E25629

Spect3D simulations with 0.2% mix of the 0.7% Ge-doped CD shell 
match the measured absorption

•	 According to simulations, the mass of the DT shell is ~20 ng

•	 The mass of the CH(Ge 0.7%) in the shell is ~120 ng

•	 According to LILAC, the hot spot is ~10% of the total mass, therefore 
assuming only ~50% of the mix gets into the hot spot at ~6 ng
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The emission spectrum from Spect3D with 0.1% mix into the core compares 
favorably with measured spectrum from the x-ray specrometer (XRS)

•	 XRS is an absolutely calibrated time- 
integrated x-ray spectrometer

•	 The emission time is assumed to be 100 ps

•	 The Spect3D spectrum is broadened
	 to account for the instrument resolution

•	 The experimental spectrum is shifted
	 to match the Spect3D continuum
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E25675

A number of operational issues prevent the crystal
imager from achieving its potential performance

•	 With an ~15-nm edge response the imager does not achieve its predicted 
resolution of <5 nm, most likely caused by crystal imperfections

•	 Pointing variations in the crystal-insertion mechanism lead to clipping 
on the x-ray framing-camera strip

•	 Variations in the OMEGA EP beam focus location prevent good centering
	 of the imploded core with respect to the backlighter
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E25676

Several improvements to the setup of the crystal-imaging system are in progress

•	 The cause of this drift in the OMEGA EP beam focus location 
is being investigated and will be addressed

•	 A new pointing scheme will be implemented to eliminate
	 the pointing variations in the crystal-insertion mechanism

•	 A higher-quality quartz substrate will be used in the future
	 to improve the spatial resolution from ~15 nm to <5 nm

•	 An experimental program to increase the brightness
	 of the Si backlighter has started
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