Picosecond Streaked K-shell Spectroscopy of Near Solid-Density Aluminum Plasmas

Laboratory for Laser Energetics

ROCHESTER

American Physical Society Division of Plasma Physics San Jose, CA 31 October-4 November 2016

UR 🔌

A linear red shift of the 1s2p–1s² transition in He-like aluminum was observed for electron densities between 1 to 5×10^{23} cm⁻³

- High-intensity, short-pulse laser interactions have been used to study dense plasma line shifts
- Picosecond x-ray spectroscopy was used to measure the thermal line emission from a buried aluminum tracer layer
- The plasma conditions were inferred from the thermal line width and satellite-intensity ratio using a nonlocal thermodynamic equilibrium (NLTE) collisional-radiative atomic physics model (*PrismSPECT*)*

The observed line shifts are consistent with an analytic line-shift model** based on numerical ion-sphere calculations for dense plasmas.

Collaborators

P. M. Nilson, S. Ivancic, C. Mileham, I. A. Begishev, and D. H. Froula

University of Rochester Laboratory for Laser Energetics

I. E. Golovkin

Prism Computational Sciences

Accurate descriptions of plasma-dependent atomic properties are required to understand high-energy-density systems

- The radiative and thermodynamic properties of a plasma are modified at high energy density^{*,**}:
 - nonequilibrium equation of state
 - pressure ionization and continuum lowering
 - energy level and spectral line shifts
- Dense plasma line shifts originate from freeelectron modification of the ionic potential**,[†]
 - free electrons screen the nuclear charge
 - bound energy levels shift toward the continuum
 - emission lines shift to lower photon energies

 *G. Chabrier, F. Douchin, and A. Y. Potekhin, J. Phys., Condens. Matter <u>14</u>, 9133 (2002).
**D. Salzmann, Atomic Physics in Hot Plasmas, International Series of Monographs on Physics, Vol. 97 (Oxford University Press, New York, 1998).
[†]H. R. Griem, Spectral Line Broadening by Plasmas (Academic Press, New York, 1974).

Experiments using buried-layer targets access the dense, high-temperature plasma regime

- The buried layer heats through collisional dissipation of a resistive return current
- Buried-layer emission is studied with an ultrafast streaked x-ray spectrometer

The data are compared to simulated spectra to infer the plasma conditions.

E24575b

*C. R. D. Brown et al., Phys. Rev. Lett. 106, 185003 (2011). ** D. J. Hoarty et al., High Energy Density Phys. 9, 661 (2013).

A focusing, time-resolved Hall spectrometer measured He_{α} emission from a buried aluminum layer

The instantaneous temperature and density were inferred by comparing with a NLTE collisional-radiative atomic physics model*

Doppler, Stark, natural, Auger, and opacity-broadening contributions.

*J. J. MacFarlane et al., High Energy Density Phys. 3, 181 (2007). ** FWHM: full width at half maximum

E25516

The spectral shifts were quantified by the first moment of the line shape

E25606 ROCHESTER Mellor/

A simplified line-shift model based on numerical ion-sphere calculations shows broad agreement with the experimental data

- The analytic model is a parameterization of the self-consistent ion-sphere model (SCFISM)*,** for dense, finite-temperature plasmas
- Apparent shifts calculated from the NLTE atomic model verify that the observed shifts are not spurious

The line-shift model agrees well at lower densities; there is evidence for deviation at the most extreme conditions.

E25517

^{*}F. J. Rogers, H. C. Graboske, and D. J. Harwood, Phys. Rev. A 1, 1577 (1970).

Summary/Conclusions

A linear red shift of the 1s2p–1s² transition in He-like aluminum was observed for electron densities between 1 to 5×10^{23} cm⁻³

- High-intensity, short-pulse laser interactions have been used to study dense plasma line shifts
- Picosecond x-ray spectroscopy was used to measure the thermal line emission from a buried aluminum tracer layer
- The plasma conditions were inferred from the thermal line width and satellite-intensity ratio using a nonlocal thermodynamic equilibrium (NLTE) collisional-radiative atomic physics model (*PrismSPECT*)*

The observed line shifts are consistent with an analytic line-shift model** based on numerical ion-sphere calculations for dense plasmas.

E25604

