Hot-Electron Generation at Direct-Drive Ignition-Relevant Plasma Conditions at the National Ignition Facility

A. A. Solodov
University of Rochester
Laboratory for Laser Energetics

CH or Si

23° and 30° beams or 45° and 50° beams

Laser intensity ($\times 10^{15}$ W/cm2)

Hot-electron conversion efficiency (%)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Inner beams, CH

Outer beams, CH

Inner beams, Si

58th Annual Meeting of the American Physical Society
Division of Plasma Physics
San Jose, CA
31 October–4 November 2016
Summary

A laser-energy conversion efficiency of \(\sim 1\% \) to 3\% into hot electrons with \(T_e \sim 45 \) to 60 keV was inferred

- Planar-target experiments at the National Ignition Facility (NIF) reproduce direct-drive (DD) ignition-relevant plasma conditions
- The properties of hot electrons were inferred using the measured hard x-ray spectra and Monte Carlo simulations
- The beam angle of incidence did not have a strong effect on the hot-electron production
- Hot-electron levels suggest a need for preheat mitigation; the use of Si ablators for preheat mitigation was investigated
Collaborators

University of Rochester
Laboratory for Laser Energetics

J. W. Bates and A. J. Schmitt

United States Naval Research Laboratory

P. A. Michel, T. Chapman, J. D. Moody, J. E. Ralph, and M. A. Barrios

Lawrence Livermore National Laboratory
Planar NIF experiments explore laser–plasma interaction (LPI) instabilities and hot-electron production in DD ignition-relevant plasma conditions

Coronal conditions predicted by DRACO radiation–hydrodynamic simulations

<table>
<thead>
<tr>
<th>Parameters at $n_c/4$ surface</th>
<th>OMEGA*</th>
<th>Current NIF DD**</th>
<th>Ignition NIF DD***</th>
<th>Planar NIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_L (W/cm2)</td>
<td>$<4 \times 10^{14}$</td>
<td>4.5×10^{14}</td>
<td>6 to 8×10^{14}</td>
<td>5 to 15×10^{14}</td>
</tr>
<tr>
<td>L_n (μm)</td>
<td><350</td>
<td>350</td>
<td>600</td>
<td>500 to 700</td>
</tr>
<tr>
<td>T_e (keV)</td>
<td><2.5</td>
<td>3.5</td>
<td>3.5 to 5</td>
<td>3 to 5</td>
</tr>
</tbody>
</table>

***V. N. Goncharov et al., T05.00003, this conference.
The scaling of hot-electron properties with laser intensity in CH targets was studied using large-angle beams. Absolute-instability thresholds* are exceeded in this experimental design.

\[\eta_{SRS} = I^{4/3} \left(\frac{n_{e}}{L_{n}} \mu m \right)^{4/3}/2377 \sim 10 \text{ to } 25 \]

\[\eta_{TPD} = I \left(\frac{n_{e}}{L_{n}} \mu m / (230 T_{e,keV}) \right) \sim 4 \text{ to } 7 \]

Hot-electron production in CH and Si targets was studied using small-angle beams.

DRACO-simulated coronal conditions at \(n_c/4 \) (4.5 to 7.5 ns)

<table>
<thead>
<tr>
<th></th>
<th>N160719-003, CH</th>
<th>N160421-001, CH</th>
<th>N160719-001, Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I) (W/cm(^2))</td>
<td>6 (\times) 10(^{14})</td>
<td>11 (\times) 10(^{14})</td>
<td>9 (\times) 10(^{14})</td>
</tr>
<tr>
<td>(L_n) ((\mu)m)</td>
<td>670</td>
<td>690</td>
<td>560</td>
</tr>
<tr>
<td>(T_e) (keV)</td>
<td>3.6</td>
<td>4.4</td>
<td>5.2</td>
</tr>
</tbody>
</table>
Hot-electron properties were inferred using the measured hard x-ray spectra

- Time-integrated hard x-ray spectra obtained using the filter-fluorescer x-ray diagnostic (FFLEX)*

\[\text{X-ray emission (keV/keV} \cdot \text{sr)} \]

\[\begin{align*}
0 & \quad 10^9 \\
50 & \quad 10^{10} \\
100 & \quad 10^{11} \\
150 & \quad 10^{12} \\
200 & \quad 10^{13} \\
250 & \quad 10^{13} \\
300 & \quad 10^{13}
\end{align*} \]

\[h\nu \ (\text{keV}) \]

Outer-beam shots, CH

\[\begin{align*}
\sim 6 \times 10^{14} \\
\sim 10 \times 10^{14} \\
\sim 15 \times 10^{14}
\end{align*} \ W/cm^2

- Hot-electron energy was inferred from comparing the x-ray spectra and EGSnrc** Monte Carlo simulations

The inferred laser energy to hot-electron conversion efficiency increases from ~1% to 3% with the laser intensity.

- The use of a Si ablator reduces the energy of hot electrons above ~50 keV (relevant to preheat) by ~35%, compared to the relevant CH shots.
- Hot-electron production is attributed to SRS, which dominates LPI in these experiments.*

Hot-electron levels suggest a need for mitigation

• The ignition target performance is negatively affected if more than $\sim 0.15\%$ of the laser energy is coupled into the cold fuel in the form of hot electrons*

• If electron divergence is large, only $\sim 25\%$ of the hot electrons will intersect the cold fuel and result in preheat**

• Electrons with energy below ~ 50 keV will be stopped in the ablator and will not preheat the compressed fuel

• Hot-electron preheat mitigation is needed if more than $\sim 0.7\%$ of the laser energy is converted to hot electrons at $T_e \sim 50$ to 60 keV
 – ignition designs with $I > 5 \times 10^{14}$ W/cm2 at $n_c/4$ need preheat mitigation
 – the use of Si ablators for preheat mitigation is investigated

Hot-electron divergence will be investigated in Mo-ball experiments on the NIF.
A laser-energy conversion efficiency of ~1% to 3% into hot electrons with $T_e \sim 45$ to 60 keV was inferred.

- Planar-target experiments at the National Ignition Facility (NIF) reproduce direct-drive (DD) ignition-relevant plasma conditions.
- The properties of hot electrons were inferred using the measured hard x-ray spectra and Monte Carlo simulations.
- The beam angle of incidence did not have a strong effect on the hot-electron production.
- Hot-electron levels suggest a need for preheat mitigation; the use of Si ablators for preheat mitigation was investigated.