Three-Dimensional Evaluation of Laser Imprint in National Ignition Facility Multi-FM Smoothing by Spectral Dispersion Experiments

University of Rochester Laboratory for Laser Energetics

San Jose, CA 31 October-4 November 2016

Multi-FM smoothing by spectral dispersion (SSD) was validated at the National Ignition Facility (NIF)

- One-quad multi-FM planar-imprint experiments confirmed expected ~1.6× higher effectiveness of multi-FM compared to the NIF's 45-GHz SSD (with LLE's diffraction grating) in imprint reduction
- Three-dimensional HYDRA simulations resolve all single-beam imprint modes and are in reasonable agreement with the experimental data
- X-ray imaging-system resolution of ~10 μ m is required to image imprintseeded areal-density modulations in the NIF flat-foil imprint experiments

Collaborators

M. Hohenberger, P. B. Radha, M. J. Rosenberg, K. S. Anderson, V. N. Goncharov, J. A. Marozas, F. J. Marshall, P. W. McKenty, S. P. Regan, and T. C. Sangster

> University of Rochester Laboratory for Laser Energetics

J. M. Di Nicola, J. M. Koning, M. M. Marinak, and L. Masse

Lawrence Livermore National Laboratory

Single-beam smoothing is required for high-performance direct-drive implosions on the NIF

1-D Multi-FM SSD* has been implemented in a single quad (Q24B) on the NIF.

rms: root mean square

*J. A. Marozas, J. D. Zuegel, and T. J. B. Collins, Bull. Am. Phys. Soc. 55, 294 (2010).

One-quad multi-FM planar-imprint experiments were performed to validate Multi-FM SSD on the NIF

- 130-GHz total bandwidth)
- 75-GHz total bandwidth)
- 1050 l/mm)

TC12564a

Shot N160204 used multi-FM SSD (3-GHz + multi-FM modulators;

 Shot N160205 used 45-GHz SSD (3-GHz + 17-GHz modulators;

 Both shots used the Laboratory for Laser Energetics (LLE's) 1700-I/mm diffraction grating (compared to the NIF's standard

TCC = target chamber center

Calculated* instantaneous far-field spots are used to model the effects of speckle and SSD

* J. A. Marozas et al., J. Opt. Soc. Am. B 19, 7 (2002).

Three-dimensional HYDRA* is used to simulate the 3-D impact of SSD

- Simulations use HYDRA's spherical laser deposition model (no refractive smoothing)
- Simulations resolve the speckle size (~6 μ m)
- Surface corrugation was not simulated

TC12566a

*M. M. Marinak et al., Phys. Plasmas <u>8</u>, 2275 (2001).

HYDRA simulations predict high-amplitude surface nonuniformities at the time of the earliest radiograph

ROCHESTER

8

Simulations reproduce imprint features seen in the experimental radiographs

Simulated imprint-seeded broadband modulations of the areal density are within error bars of the experimental data above the noise level

X-ray imaging-system resolution of ${\sim}10~\mu\text{m}$ is required for imaging the imprint-seeded areal-density modulations

ROCHESTER

Multi-FM smoothing by spectral dispersion (SSD) was validated at the National Ignition Facility (NIF)

- One-quad multi-FM planar-imprint experiments confirmed expected ~1.6× higher effectiveness of multi-FM compared to the NIF's 45-GHz SSD (with LLE's diffraction grating) in imprint reduction
- Three-dimensional HYDRA simulations resolve all single-beam imprint modes and are in reasonable agreement with the experimental data
- X-ray imaging-system resolution of ~10 μ m is required to image imprintseeded areal-density modulations in the NIF flat-foil imprint experiments

