Three-Dimensional Evaluation of Laser Imprint in National Ignition Facility
Multi-FM Smoothing by Spectral Dispersion Experiments

HYDRA simulations

A. Shvydky
University of Rochester
Laboratory for Laser Energetics

58th Annual Meeting of the
American Physical Society
Division of Plasma Physics
San Jose, CA
31 October–4 November 2016
Summary

Multi-FM smoothing by spectral dispersion (SSD) was validated at the National Ignition Facility (NIF)

- One-quad multi-FM planar-imprint experiments confirmed expected ~1.6× higher effectiveness of multi-FM compared to the NIF’s 45-GHz SSD (with LLE’s diffraction grating) in imprint reduction
- Three-dimensional HYDRA simulations resolve all single-beam imprint modes and are in reasonable agreement with the experimental data
- X-ray imaging-system resolution of ~10 μm is required to image imprint-seeded areal-density modulations in the NIF flat-foil imprint experiments
Collaborators

M. Hohenberger, P. B. Radha, M. J. Rosenberg, K. S. Anderson,
V. N. Goncharov, J. A. Marozas, F. J. Marshall, P. W. McKenty,
S. P. Regan, and T. C. Sangster

University of Rochester
Laboratory for Laser Energetics

J. M. Di Nicola, J. M. Koning,
M. M. Marinak, and L. Masse

Lawrence Livermore National Laboratory
Single-beam smoothing is required for high-performance direct-drive implosions on the NIF

Inner-cone (23.5°) beam intensity with different levels of smoothing

1-D Multi-FM SSD* has been implemented in a single quad (Q24B) on the NIF.

\[\sigma_{\text{rms}} = 1 \quad \sigma_{\text{rms}} = 0.16 \quad \sigma_{\text{rms}} = 0.11 \]

rms: root mean square

One-quad multi-FM planar-imprint experiments were performed to validate Multi-FM SSD on the NIF.

- Shot N160204 used multi-FM SSD (3-GHz + multi-FM modulators; 130-GHz total bandwidth)
- Shot N160205 used 45-GHz SSD (3-GHz + 17-GHz modulators; 75-GHz total bandwidth)
- Both shots used the Laboratory for Laser Energetics (LLE’s) 1700-l/mm diffraction grating (compared to the NIF’s standard 1050 l/mm)
Calculated* instantaneous far-field spots are used to model the effects of speckle and SSD

Three-dimensional HYDRA* is used to simulate the 3-D impact of SSD

- Simulations use HYDRA’s spherical laser deposition model (no refractive smoothing)
- Simulations resolve the speckle size (~6 μm)
- Surface corrugation was not simulated

HYDRA simulations predict high-amplitude surface nonuniformities at the time of the earliest radiograph.
Simulations reproduce imprint features seen in the experimental radiographs.

45-GHz SSD, 1.36 ns

Multi-FM, 1.38 ns

λ = 100-μm corrugation
Simulated imprint-seeded broadband modulations of the areal density are within error bars of the experimental data above the noise level.
X-ray imaging-system resolution of $\sim 10 \, \mu m$ is required for imaging the imprint-seeded areal-density modulations.

![Graph showing resolution vs. time and resolution vs. noise for different SSD types.](image-url)
Multi-FM smoothing by spectral dispersion (SSD) was validated at the National Ignition Facility (NIF)

- One-quad multi-FM planar-imprint experiments confirmed expected \(\sim 1.6 \times\) higher effectiveness of multi-FM compared to the NIF’s 45-GHz SSD (with LLE’s diffraction grating) in imprint reduction
- Three-dimensional HYDRA simulations resolve all single-beam imprint modes and are in reasonable agreement with the experimental data
- X-ray imaging-system resolution of \(\sim 10 \ \mu m\) is required to image imprint-seeded areal-density modulations in the NIF flat-foil imprint experiments