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Summary

Hot-electron–driven shocks can ignite direct-drive targets  
at megajoule laser energies (electron shock ignition)

• At 1016 W/cm2, hot electrons can be more effective than laser 
ablation for driving ignitor shocks into shock-ignition targets

• 1-D simulations show ignition and high gain for shock- 
ignition targets at megajoule energies

• 2-D simulations are used to evaluate the robustness  
of electron shock ignition
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A large amount of hot electrons are produced  
at shock-ignition-relevant laser intensities 

• OMEGA experimental data show that the laser-to-hot-electron instantaneous  
conversion efficiency can be up to 13% in CH targets*

• For a laser intensity of 5 × 1015 W/cm2, with smoothing by spectral dispersion (SSD) off,  
Thot + 60 keV is observed and the dominated scheme is stimulated Raman scattering (SRS)

• National Ignition Facility (NIF)-scale targets will likely produce even more  
hot electrons because of the larger plasma scale length
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 R. Nora et al., Phys. Rev. Lett. 114, 045001 (2015).
*  W. Theobald et al., “The Effect of the Ablator Material on Hot Electrons and Ablation 
Pressure in Shock Ignition,” to be submitted to Physical Review Letters.

h: laser-to-hot-electron  
conversion efficiency
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Simple models are used to compare the laser  
and hot-electron ablation pressure
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 – ablation pressure

Mbar
I

P 40
/

laser
15

2 3

m
= c m

MbarIP 175 / /
hot

1 3
15

2 3t h= ^ h

* X. Ribeyre et al., Phys. Plasmas 20, 062705 (2013);
A. R. Piriz, S. A. Piriz, and N. A. Tahir, Phys. Plasmas 20, 112704 (2013);
S. Gus’kov et al., Phys. Rev. Lett. 109, 255004 (2012). 
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Hot-electron–driven ablation pressure exceeds laser-driven  
ablation pressure for high-density material 

• High density and high hot-electron conversion efficiency  
benefit the hot-electron–driven ablation pressure
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Simulations of electron shock-ignition implosions  
use targets previously designed for shock ignition on the NIF

• The assembly pulse target design* uses low implosion velocity +200 km/s,  
low adiabat +1.5, and low main-drive intensity +5 × 1014 W/cm2

• In our simulations, the laser spike is replaced with a hot-electron spike with h + 10% to 20%
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* K. S. Anderson et al., Phys. Plasmas 20, 056312 (2013).
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Hot electrons are included in the DEC2D* code to simulate electron-driven 
shocks, and shocks are produced by increasing the static pressure

• Hot electrons have Maxwellian distribution with stopping power  
modeled by Solodov–Betti** using the straight-line method

• 50 groups up to 400 keV, Thot = 60 keV,† Ehot = 25 kJ
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* K. Anderson, R. Betti, and T. A. Gardiner, Bull. Am. Phys. Soc. 46, 280 (2001). 
** A. A. Solodov and R. Betti, Phys. Plasmas 15, 042707 (2008).

†  W. Theobald et al., “The Effect of the Ablator Material on Hot Electrons and Ablation 
Pressure in Shock Ignition,” to be submitted to Physical Review Letters.
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One-dimensional simulations show high gains with Elaser ~ 600 kJ  
and Ehot > 20 kJ lead to a large shock-launching window

• >10-kJ hot electrons can ignite

• Greater hot-electron energy leads to higher gain

• Greater hot-electron energy leads to a wider ignition window
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Perturbation spectra are introduced at the end  
of the main pulse (before the ignitor shocks) 

• Density perturbations are utilized 

• Two kinds of multimode perturbation spectra are used from available references 
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* S. X. Hu et al., Phys. Plasmas 17, 102706 (2010).
** P. W. McKenty et al., Phys. Plasmas 8, 2315 (2001).
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Two-dimensional simulations show the target robustness  
depends on the shock-launching time
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Summary/Conclusions
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Hot-electron–driven shocks can ignite direct-drive targets  
at megajoule laser energies (electron shock ignition)

• At 1016 W/cm2, hot electrons can be more effective than laser 
ablation for driving ignitor shocks into shock-ignition targets

• 1-D simulations show ignition and high gain for shock- 
ignition targets at megajoule energies

• 2-D simulations are used to evaluate the robustness  
of electron shock ignition


