Two-Dimensional Simulations of Electron Shock Ignition at the Megajoule Scale

58th Annual Meeting of the **American Physical Society** San Jose, CA

W. Shang **University of Rochester** Laboratory for Laser Energetics

Division of Plasma Physics 31 October-4 November 2016

Summary

Hot-electron–driven shocks can ignite direct-drive targets at megajoule laser energies (electron shock ignition)

- At 10¹⁶ W/cm², hot electrons can be more effective than laser ablation for driving ignitor shocks into shock-ignition targets
- 1-D simulations show ignition and high gain for shockignition targets at megajoule energies
- 2-D simulations are used to evaluate the robustness of electron shock ignition

Collaborators

R. Betti, S. X. Hu, K. M. Woo, A. Bose, and A. R. Christopherson

University of Rochester Laboratory for Laser Energetics

A large amount of hot electrons are produced at shock-ignition-relevant laser intensities

- OMEGA experimental data show that the laser-to-hot-electron instantaneous conversion efficiency can be up to 13% in CH targets*
- For a laser intensity of 5×10^{15} W/cm², with smoothing by spectral dispersion (SSD) off, $T_{hot} \sim 60$ keV is observed and the dominated scheme is stimulated Raman scattering (SRS)
- National Ignition Facility (NIF)-scale targets will likely produce even more hot electrons because of the larger plasma scale length

η : laser-to-hot-electron conversion efficiency

Simple models are used to compare the laser and hot-electron ablation pressure

- Laser driven
 - isothermal rarefaction
 - ablation pressure

$$P_{\text{laser}} = 40 \left(\frac{I_{15}}{\lambda}\right)^{2/3} \text{Mbar}$$

- Electron driven
 - range
 - launching time
 - ablation pressure*

$$P_{\rm hot} = 175 \rho^{1/3} (I_{15}\eta)^{2/3} \,{\rm Mbar}$$

^{*}X. Ribeyre et al., Phys. Plasmas 20, 062705 (2013); A. R. Piriz, S. A. Piriz, and N. A. Tahir, Phys. Plasmas 20, 112704 (2013);

S. Gus'kov et al., Phys. Rev. Lett. 109, 255004 (2012).

Hot-electron–driven ablation pressure exceeds laser-driven ablation pressure for high-density material

• High density and high hot-electron conversion efficiency benefit the hot-electron-driven ablation pressure

Simulations of electron shock-ignition implosions use targets previously designed for shock ignition on the NIF

- The assembly pulse target design* uses low implosion velocity ~200 km/s, low adiabat ~1.5, and low main-drive intensity ~5 \times 10¹⁴ W/cm²
- In our simulations, the laser spike is replaced with a hot-electron spike with $\eta \sim 10\%$ to 20%

*K. S. Anderson et al., Phys. Plasmas 20, 056312 (2013).

Hot electrons are included in the DEC2D* code to simulate electron-driven shocks, and shocks are produced by increasing the static pressure

- Hot electrons have Maxwellian distribution with stopping power modeled by Solodov–Betti** using the straight-line method
- 50 groups up to 400 keV, $T_{hot} = 60 \text{ keV}$, $^{\dagger} E_{hot} = 25 \text{ kJ}$

The dense shell pressure increases through hot-electron-energy deposition.

*K. Anderson, R. Betti, and T. A. Gardiner, Bull. Am. Phys. Soc. <u>46</u>, 280 (2001). ** A. A. Solodov and R. Betti, Phys. Plasmas 15, 042707 (2008). [†]W. Theobald *et al.*, "The Effect of the Ablator Material on Hot Electrons and Ablation Pressure in Shock Ignition," to be submitted to Physical Review Letters.

One-dimensional simulations show high gains with *E*_{laser} ~ 600 kJ and E_{hot} > 20 kJ lead to a large shock-launching window

- >10-kJ hot electrons can ignite
- Greater hot-electron energy leads to higher gain
- Greater hot-electron energy leads to a wider ignition window

Perturbation spectra are introduced at the end of the main pulse (before the ignitor shocks)

- Density perturbations are utilized

TC13084

** P. W. McKenty et al., Phys. Plasmas 8, 2315 (2001).

Two-dimensional simulations show the target robustness depends on the shock-launching time

Multimode NIF Multimode OMEGA Single-mode 10

Without α heating

*YOC_{no α} = yield-over-clean without alphas

Summary/Conclusions

Hot-electron–driven shocks can ignite direct-drive targets at megajoule laser energies (electron shock ignition)

- At 10¹⁶ W/cm², hot electrons can be more effective than laser ablation for driving ignitor shocks into shock-ignition targets
- 1-D simulations show ignition and high gain for shockignition targets at megajoule energies
- 2-D simulations are used to evaluate the robustness of electron shock ignition

