Stimulated Raman Scattering in Direct-Drive Inertial Confinement Fusion

Experiments carried out at the National Ignition Facility

View ports

FABS

50°

30°

23°

Laser power (arbitrary units)

Time (ns)

0 2 4 6

Plasma-producing beams ("outer")

Interaction beams ("inner")

W. Seka
University of Rochester
Laboratory for Laser Energetics

58th Annual Meeting of the American Physical Society
Division of Plasma Physics
San Jose, CA
31 October–4 November 2016
Absorption and refraction significantly affect stimulated Raman scattering (SRS) in National Ignition Facility (NIF) planar-target experiments

- Planar NIF experiments are SRS dominated

- SRS spectra are strongly affected by absorption and refraction
 - are predominantly caused by sidescattering
 - coronal T_e predictions match measurements using spectroscopy

- Estimates of total SRS levels ~5% of incident are based on simulations, ray-trace calculations, a few measurements, and large extrapolations
Collaborators

University of Rochester
Laboratory for Laser Energetics

P. Michel, C. S. Goyon, and J. D. Moody

Lawrence Livermore National Laboratory
$\omega/2$ light (702 nm) from absolute SRS can escape at $\leq 18^\circ$ from ∇n although with rapidly decreasing efficiency

- Absorption of $\omega/2$ light is high (>97%)
- Refraction severely limits the angular emission of $\omega/2$ light
- Only a tilt of the target allows for $\omega/2$ light to be observed at NIF ports

CH target

Q33 SRS diagnostic

17 NIF quads at 0° to 55° to target normal

T_e (keV)

λ (nm)

Distance (mm)

Time (ns)

Distance (mm)

527 nm

500 nm

$n_c/4 \rightarrow$

$M = 1$
The total absolute SRS emission can be estimated from ray trace and simulated plasma conditions

- Absorption of $\omega/2$ light is high (>97%)
- Refraction severely limits the angular emission of $\omega/2$ light
- Only a tilt of the target allows for $\omega/2$ light to be observed at NIF ports

\[I(\theta) = T_0 \times \exp \left[-\left(\frac{\theta}{10.5}\right)^6\right] \]

\[T_0 = 2\% \]

\[\text{Multiplier } -2230 \] for tilted target

\[\lambda \text{ (nm)} \]

\[\theta (\degree) \]

\[T_e \text{ (keV)} \]
\(\omega/2 \) spectra in OMEGA implosions are a signature of two-plasmon decay (TPD), while on the NIF they represent the absolute SRS instability.

The sharp, red-shifted spectral signature is a useful coronal temperature diagnostic. Measured and DRACO-predicted electron temperature agree very well.

- TPD-related photons require an inefficient generation mechanism.
- Every SRS decay results in a scattered photon (100% efficiency).
- Absolute SRS may effectively suppress TPD.
Theory supports that NIF planar experiments are SRS-dominated, while the OMEGA experiments are TPD-dominated.

TPD threshold depends on T_e; SRS threshold does not*.

702-nm photon escape: ~2%
630-nm photon escape: ~50%

* R.W. Short, based on single-beam theory (private communication).
SRS spectra observed at 23°, 31°, and 50° indicate that SRS sidescattering dominates over backscattering.

- $\sim 50\%$ of the incident laser radiation reaches SRS densities with minimal refraction.
- SRS light is significantly affected by refraction, particularly at $\lambda > 650$ nm.
- For incident laser at 30°, local SRS sidescattering at $>30^\circ$ is required.
The total SRS emission can be estimated from measurements and simulations

- Estimates of total SRS energy of ~5% of incident (CH target shot 160406) and
 - measured SRS energies (fast diodes)
 - measured spectra
 - assuming sidescattering as deduced from ray trace using DRACO plasma parameters

Because SRS energy measurements are restricted on the NIF to two (non-optimal) locations, the extrapolations are problematic but still useful.
Absorption and refraction significantly affect stimulated Raman scattering (SRS) in National Ignition Facility (NIF) planar-target experiments

- Planar NIF experiments are SRS dominated
- SRS spectra are strongly affected by absorption and refraction
 - are predominantly caused by sidescattering
 - coronal T_e predictions match measurements using spectroscopy
- Estimates of total SRS levels \sim5% of incident are based on simulations, ray-trace calculations, a few measurements, and large extrapolations
$\omega/2$ spectral shifts can be used for coronal T_e measurements

NIF planar-target experiments ($\omega/2$ spectra)

Draco
4.5 keV

702 nm

CH target

$\Delta \lambda_{nm} = 3.09 * T_e, \text{keV} - \delta \lambda_{\text{Doppler}} - \delta \lambda_{\text{Dewandre}}$

Stationary plasma
Plasma flow
Diverging plasma