### High-Resolving-Power, Ultrafast Streaked X-Ray **Spectroscopy on OMEGA EP**





### Summary

### A high-resolving-power, streaked x-ray spectrometer is being developed and tested on OMEGA EP

- The goal is to achieve a resolving power of several thousand and 2-ps temporal resolution (February 2017)
- To understand system performance, a time-integrating survey spectrometer has been deployed on OMEGA EP
- Survey spectrometer measurements and offline testing show
  - focusing fidelity: ~50- $\mu$ m line focus
  - resolving power: >2000
  - throughput:  $\sim 10^{-7}$  ph/ph
  - shielding: 5 to 15 cm of lead
- These measurements provide a firm foundation for designing and implementing the time-resolved instrument

The instrument will ultimately be used to measure temperature equilibration dynamics and material response to ultrafast heating.



E25274c





F. Ehrne, C. Mileham, D. Mastrosimone, R. K. Jungquist, C. Taylor, R. Boni, J. Hassett, C. R. Stillman, S. T. Ivancic, D. J. Lonobile, R. W. Kidder, M. J. Shoup III, A. A. Solodov, C. Stoeckl, and D. H. Froula\*

> **University of Rochester** Laboratory for Laser Energetics \*also Department of Physics

K. W. Hill, L. Gao, M. Bitter, and P. Efthimion

**Princeton Plasma Physics Laboratory** 

**D. D. Meyerhofer** 

Los Alamos National Laboratory







### Motivation

### A high-energy ultrafast laser can heat solid-density material on a time scale much faster than the material expands

- Heating at high density produces exotic states of matter in extreme thermodynamic conditions<sup>1</sup>
- The possible extremes in temperature enables novel material and radiative properties experiments<sup>2</sup>
  - e.g., mean opacity of solar interior matter<sup>3</sup>
- New diagnostic techniques are sought for testing
  - plasma-dependent atomic processes<sup>4</sup>
  - plasma opacity<sup>5</sup>
  - equation-of-state models<sup>6</sup>

These studies require dense, high-temperature plasmas that are well characterized.



### Density (g/cm<sup>3</sup>)



E21173f





<sup>&</sup>lt;sup>1</sup>A Report on the SAUUL Workshop, Washington, DC (17–19 June 2002). <sup>2</sup>K. Nazir et al., Appl. Phys. Lett. 69, 3686 (1996). <sup>3</sup>J. E. Bailey *et al.*, Nature <u>517</u>, 56 (2015).

<sup>&</sup>lt;sup>4</sup>D. J. Hoarty et al., Phys. Rev. Lett. 110, 265003 (2013).

<sup>&</sup>lt;sup>5</sup>R. A. London and J. I. Castor, High Energy Density Phys. 9, 725 (2013).

<sup>&</sup>lt;sup>6</sup>M. E. Foord, D. B. Reisman, and P. T. Springer, Rev. Sci. Instrum. 75, 2586 (2004).

### Motivation

### Outer-shell ionization affects the energy and shape of the characteristic $K_{\alpha}$ line in a partially ionized plasma

- Hot electrons create K-shell vacancies when colliding with ions
- Ionization by thermal electrons removes electrons from the ions' outer shells
- As the ionization progresses, the  $K_{\alpha_{1,2}}$  lines increase their energy<sup>1–5</sup>



Time-resolving the  $K_{\alpha}$  line shift allows for the mean ionization state of the plasma to be inferred during the rapid heating phase.

<sup>3</sup>G. Gregori et al., Contrib. Plasma Physics 45, 284 (2005). <sup>4</sup>P. M. Nilson et al., Phys. Plasmas <u>18</u>, 042702 (2011). <sup>5</sup>J. F. Seely et al., High Energy Density Phys. 9, 354 (2013).

E18508d



X-ray energy (eV)

```
<sup>1</sup>K. Słabkowska et al., High Energy Density Phys. <u>15</u>, 8 (2015).
<sup>2</sup>K. Słabkowska et al., High Energy Density Phys. <u>14</u>, 30 (2015).
```

### **Conceptual Design**

# The instrument is based on two diagnostic channels, each with a spherical Bragg crystal





### **Spectrometer Measurements**

### High-power experiments show the focusing fidelity, resolving power, and throughput meet the desired requirements



E25096b





## streak camera is ~1000 ADU per pixel

## to the length of the streak-camera slit

### Time-integrated measurements on OMEGA EP show spectral shifts increasing with target energy density









### Summary/Conclusions

### A high-resolving-power, streaked x-ray spectrometer is being developed and tested on OMEGA EP

- The goal is to achieve a resolving power of several thousand and 2-ps temporal resolution (February 2017)
- To understand system performance, a time-integrating survey spectrometer has been deployed on OMEGA EP
- Survey spectrometer measurements and offline testing show
  - focusing fidelity: ~50- $\mu$ m line focus
  - resolving power: >2000
  - throughput:  $\sim 10^{-7}$  ph/ph
  - shielding: 5 to 15 cm of lead
- These measurements provide a firm foundation for designing and implementing the time-resolved instrument

The instrument will ultimately be used to measure temperature equilibration dynamics and material response to ultrafast heating.



E25274c





### **Model Predictions**

# Temporal spectral shifts on the Cu K $_{\alpha}$ line in rapidly heated solid matter will validate the spectrometer performance

- Synthetic spectra from hot, dense matter are required
- LSP<sup>1</sup> calculates
  - energy-transport physics
  - electromagnetic-field generation
  - target heating
- LSP is post-processed based on tabulated *PrismSPECT<sup>2</sup>* calculations using
  - the local density and temperature at the time of emission
  - line-of-sight and high-T<sub>e</sub> opacity effects
- The calculations use an occupation probability model<sup>3</sup> and the ionization potential depression formalism of More<sup>4</sup>



<sup>1</sup>D. R. Welch *et al.*, Phys. Plasmas <u>13</u>, 063105 (2006).
<sup>2</sup>Prism Computational Sciences Inc., Madison, WI 53711.
<sup>3</sup>D. G. Hummer and D. Mihalas, Astrophys. J. <u>331</u>, 794 (1988).
<sup>4</sup>R. M. More, J. Quant. Spectrosc. Radiat. Transf. <u>27</u>, 345 (1982).



